Appendix 2.5

## Derivation of No Treat-Test and Test-Treat

ProbabilityThresholds
$B=\operatorname{cost}$ (regret) of failing to treat a $D+$ individual
$C=\operatorname{cost}$ (regret) of treating a $D$-individual unnecessarily
$T=$ cost of test
$P=$ probability of $D+$
$p[-\mid D+]=$ probability of negative test given $D+=1-$ sensitivity
$p[+\mid D-]=$ probability of positive test given $D-=1-$ specificity
Expected Cost (Regret) of No Treat strategy: (P)B

Expected Cost (Regret) of TreatStrategy: (1-P)C

Expected Cost of Test Strategy:
$P(p[-\mid D+]) B+(1-P)(p[+\mid D-]) C+T$

Reminder about odds and probability:
Convert odds to probability by replacing the denominator with the sum of the numerator and the denominator. If threshold odds are $\mathrm{C} / \mathrm{B}$, then threshold probability is $\mathrm{C} /(\mathrm{B}+\mathrm{C})$.

# No Treat-Test Threshold <br> Geometry 



Probability of Disease $\longrightarrow$
Probability of Disease
Convince yourself that the ratio of the line labeled "Numerator" to the line labeled "Denominator" is equal to the threshold odds $\mathrm{P} /(1-\mathrm{P})$

$$
\begin{aligned}
P /(1-P) & =\frac{(p[+\mid D-]) C+T}{B-(p[-\mid D+]) B-T} \\
& =\frac{(p[+\mid D-] C+T}{B(1-P[-\mid D+])-T}
\end{aligned}
$$

Substitutep[+|D+] forl-p[-|D+]
$=\frac{(p[+\mid D-]) C+T}{(p[+\mid D+]) B-T}$
$=$ NoTreat-TestThresholdOdds (add numerator to denominator for probability)
$=\frac{(p[+\mid D-]) C+T}{(p[+\mid D+]) B+(p[+\mid D-]) C}=$ No Treat-Test Threshold Probability

## No Treat-Test Threshold

Algebra
No Treat-Test threshold is where the expected cost of the "No Treat" strategy equals the expected cost of the "Test" strategy.
$(P)(B)=P(p[-\mid D+]) B+(1-P)(p[+\mid D-]) C+T$
Substitute $(P)(T)+(1-P) T$ for $T$
$(P)(B)=P(P[-\mid D+]) B+(P)(T)+(1-P)(P[+\mid D-]) C+(1-P) T$
$(P)(B)=P(p[-\mid D+] B+T)+(1-P)(P[+\mid D-] C+T)$
subtract this
$(P)(B)-P(p[-\mid D+] B+T)=(1-P)(P[+\mid D-] C+T)$
$(P)[(B)(1-p[-\mid D+])-T]=(1-P)(p[+\mid D-] C+T)$
Substitute $p[+\mid D+]$ for $1-p[-\mid D+]$
$(P)[p[+\mid D+](B)-T]=(1-P)(p[+\mid D-] C+T)$
$\frac{P}{(1-P)}=\frac{p[+\mid D-] C+T}{p[+\mid D+] B-T}$
This is threshold odds. To get threshold probability add the numerator to the denominator.
$P=\frac{(\mathrm{p}[+\mid D-]) C+T}{(\mathrm{p}[+\mid D+]) B+(\mathrm{p}[+\mid D-]) C}=$ No Treat-Test Threshold Probability


Convince yourself that

$$
\begin{aligned}
P /(l-P) & =\frac{C-(p[+\mid D-]) C+T}{(p[-\mid D+]) B+T} \\
& =\frac{C(1-p[+\mid D-]-T}{p[-\mid D+] B+T}
\end{aligned}
$$

Substitute p[-|D-] for 1-p[+|D-]

$$
=\frac{C(p[-\mid D-])-T}{(p[-\mid D+]) B+T}
$$

= Test-TreatThresholdOdds (add numerator to denominator for probability)

$$
P=\frac{(P[-\mid D-]) C-T}{(P[-\mid D+]) B+(D[-\mid D-]) C}=\text { Test-TreatThreshold Probability }
$$

The Test-Treatstrategy is where the expected cost of the "Test" strategy equals the expected cost of the "Treat" strategy.
$P(p[-\mid D+]) B+(1-P)(p[+\mid D-]) C+T=(1-P) C$
Substitute $(P)(T)+(1-P) T$ for $T$
$P(p[-\mid D+]) B+(P)(T)+(1-P)(p[+\mid D-]) C+(1-P) T=(1-P) C$
$P(p[-\mid D+] B+T)+(1-P)(p[+\mid D-] C+T)=(1-P) C$

Subtract this
$P(p[-\mid D+] B+T)=(1-P) C-(1-P)(P[+\mid D-] C+T)$
Rearrange
$P(p[-\mid D+] B+T)=(1-P)(1-p[+\mid D-])-(1-P) T$
Substitute P [-|D-] for 1-p [+|D-]
$P(P[-\mid D+] B+T)=(1-P)(P[-\mid D-] C-T)$
$\frac{P}{(l-P)}=\frac{p[-\mid D-] C-T}{p[-\mid D+] B+T}$
This is threshold odds. To get threshold probability add the numerator to the denominator.

$$
P=\frac{\mathrm{p}[-\mid D-] C-T}{\mathrm{p}[-\mid D+] B+\mathrm{p}[-\mid D-] C}=\text { Test-Treat Threshold Probability }
$$

