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What did Bayes really say and what’s the big deal?
Coin Problem and Billiards Problem

Michael A. Kohn, MD, MPP c©2023

1/9/2023

Figure 1: Bayes collage

1 Introduction

You may be confused about the debate between Frequentist and Bayesian
statistics over how to use new data to judge a hypothesis. You may also
know the formula that updates the probability of a hypothesis based on
the likelihood of the observed data under the hypothesis. Since this
formula is called Bayes’s Rule, you might think Bayes wrote it; he didn’t.
You might think the disagreement is about the formula’s validity; it isn’t.

The debate is about whether we can judge a hypothesis based only on how
likely or unlikely the observation would be if the hypothesis were true.
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Frequentisits say yes. Bayesians say no, we must consider not just the
likelihood of the observation given the hypothesis but also the prior
probability of the hypothesis and of other explanations for the observation.
Adding to the confusion is the association of Bayes with the assumption
that, prior to making an observation, all potential explanations are equally
likely. But this idea, called “equal priors” is not the issue. At its core, the
disagreement is about the meaning of probability. Is it the long-run
frequency of an event or the plausibility of a proposition based on
background information?

I believe the best way to understand both the difference between
Frequentist and Bayesian viewpoints and the difference between Bayes’s
Rule and what Bayes actually wrote is to present two related numerical
examples of using an observation to judge a hypothesis. The first is a coin
problem that was given to me during a job interview many years ago. The
second is the “billiards” problem that Bayes posed in the 1763 essay,
published posthumously, that made him famous. In the initial version of
each problem, the probabilities of the hypothesis and its alternatives are
clear. I will show how Bayesians and Frequentists both would solve the
problems using the formula known, somewhat inaccurately, as Bayes’s
Rule. Along the way, I will summarize what Bayes actually said. Then, I
will change each problem so that the probabilities of the hypothesis and its
alternatives are no longer clear. This will allow me to differentiate between
the Bayesian and Frequentist approaches. We will see how it ultimately
comes down to whether probability is the plausibility of a proposition or
the long run frequency of an event.
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2 Coin Problem

Figure 2: This photo is just for a visual related to the coin problem. A
cartoon would be better.

Many years ago, I was asked in a job interview to solve the following
problem:

A bag contains three coins: one fair coin, one 2-headed coin, and one
2-tailed coin. One of the three coins is selected and flipped. It shows
heads. What is the probability that it is the 2-headed coin?

In this problem, the hypothesis is that the selected coin is 2-headed. The
observation is that it comes up heads on a single toss. To solve the
problem, we calculate one unknown probability from three known
probabilities.

The unknown probability is the probability of having selected the 2-headed
coin given that it comes up heads on a single toss:

P (2-headed | heads).

The three known probabilities are:

1) the probability that it comes up heads given that it is the 2-headed coin,

P (heads | 2-headed) = 1,
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2) the probability of selecting the 2-headed coin,

P (2-headed) =
1

3
,

3) the overall probability of heads,

P (heads) = P (heads | fair)× 1

3
+ P (heads | 2-headed)× 1

3
+ P (heads | 2-tailed)× 1

3

P (heads) = (
1

2
× 1

3
) + (1× 1

3
) + (0× 1

3
) =

1

2

The formula used for this calculation is universally known as “Bayes’s
Theorem” or “Bayes’s Rule”. (If you think I should be punctuating the
possessive in some way other than “Bayes’s”, see Endnote #1.) I will give a
general version of Bayes’s Rule in the next section. For this problem, it is:

P (2-headed |heads) =
P (heads | 2-headed)× P (2-headed)

P (heads)

=
1× 1

3
1
2

In the interview, I didn’t simplify the answer to 2
3 , but the interviewer

passed me to the next level anyway.

3 Bayes’s Rule: History

Bayes’s Rule calculates the probability of A given B from

1) the probability of B given A,
2) the probability of A before observing B, and
3) the overall probability of B.

P (A|B) =
P (B|A)× P (A)

P (B)

But Bayes never wrote it.

Thomas Bayes (1701-1761) was a Presbyterian minister, amateur
mathematician, and member of the Royal Society of London who lived in
Tunbridge Wells, England. He is famous for “An Essay Towards Solving A
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Problem in the Doctrine of Chances”, which was published in the Royal
Society’s Philosophical Transactions on 23 December 1763, more than two
and a half years after his death (Bayes 1763; Barnard 1958). His friend
Richard Price (1723-1791) found the essay among Bayes’s papers and sent
it to the Royal Society along with an introductory letter, footnotes, an
abridgement of the latter part of the essay, and an appendix containing
numerical examples (Stigler 2018).

Figure 3: The title of the essay and first sentence of Richard Price’s intro-
ductory letter. John Canton was secretary of the Royal Society of London.

The essay as originally published is 49 pages – 24 pages written by Bayes
and 25 by Price. It is difficult to read today because, to us, the 18th
century English seems stilted and the mathematical notation is unfamiliar.

The closest Bayes gets to stating the rule that now bears his name is
Proposition 5 of 7 in an introductory section on “the general laws of
chance”.

Original text
If there be two subsequent events, the probability of the 2nd b/N and
the probability of both together P/N, and it being first discovered
that the 2nd event has happened, from hence I guess that the 1st
event has also happened, the probability I am in the right is P/b.
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Modern equivalent
If A and B are two events , then

P (A|B) =
P (B&A)

P (B)

In many textbooks, this is presented as the definition of conditional
probability (Blitzstein, 2019, page 46). Again, it is just one of seven
propositions preparatory to discussing the main problem, which we will get
to shortly.

4 Bayes’s Rule: Derivation

Whether or not Bayes wrote it, there is nothing controversial about his
rule. Everybody accepts that the probability of both A and B is the
probability of A given B times the probability of B:

P (A&B) = P (A|B)× P (B),

that the probability of both B and A is the probability of B given A times
the probability of A,

P (B&A) = P (B|A)× P (A),

and that the probability of A and B equals the the probability of B and A:

P (A&B) = P (B&A).

So,

P (A|B)× P (B) = P (B|A)× P (A)

P (A|B) =
P (B|A)× P (A)

P (B)

Nobody can argue with this one-step derivation. The identity was likely
known before Bayes and is not the focus of his essay.
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5 Bayes’s Billiards Problem

The billiards problem is the focus of Bayes’s essay, but it is harder than
the coin problem. Both problems start with the probability of “success” in
a binary trial. In the coin problem, we designate heads as a “success”, and
there are three discrete success probabilities: 0% for the 2-tailed coin; 50%
for the fair coin; and 100% for the 2-headed coin. As we shall see, in the
billiards problem, the success probability ranges continuously from 0 to 1.
To move from the coin problem to the billiards problem, I introduce a
variable θ equal to the probability of success on a single trial. For the
2-tailed coin, θ = 0; for the fair coin, θ = 0.5, and for the 2-headed coin,
θ = 1. Since the probability of selecting each of the three coins is 1

3 , before
the coin toss,

P (θ=0) =
1

3
(2-tailed)

P (θ=0.5) =
1

3
(fair)

P (θ=1) =
1

3
(2-headed)

This can be confusing because θ is itself a probability which can take on
three possible values, so 1

3 is the probability of a probability.

Figure 4: Prior to the coin toss, this is the discrete uniform probability
distribution on the variable θ. θ is the single-toss probability of heads, so
this is the probability distribution of a probability.
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What is the distribution of θ after the coin has come up heads on a single
toss? We already know that, after seeing heads, the probability of the
2-headed coin (θ = 1) is 2

3 . The possibility of a 2-tailed coin has been
eliminated, so P (θ = 0.0) = 0. That leaves only the fair coin, so
P (θ = 0.5) = 1

3 .

Figure 5: After seeing the coin come up heads, this is the probability distri-
bution on the variable θ.

In the billiards problem, the success probability θ isn’t limited to being 0,
0.5, or 1. Bayes assumes that θ is equally likely to take on any value
between 0 and 1. It’s easy to imagine selecting θ from three equally likely
alternatives, but how does one imagine selecting θ from any of the possible
values between 0 and 1? Bayes describes a hypothetical square table onto
which someone else (besides Bayes) throws a ball labelled W from the
right end. I follow many others and call the table a billiard table although
Bayes never mentions billiards. Picture Bayes sitting with his back to the
table because he doesn’t know where ball W ends up, but it is equally
likely to end up anywhere along the length of the table. To get θ (which is
unknown to Bayes), divide the distance of W from the right side of the
table by the length of the table.
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Figure 6: Bayes’s “Billiard” Table: Stand on the right end AD and toss ball
W onto the table and towards the left end BC. It is equally likely to end
up anywhere along the length of the table. Call its unknown distance from
the right end θ where 0 ≤ θ ≤ 1

Bayes’s binary event is not tossing a coin for heads or tails. Instead, while
he still has his back to the table, the same “someone else” tosses a second
ball O onto it. The equivalent of “heads” is having O end up to the right
of the first ball W . We will call this a “success”. After tossing ball O, the
“someone else” reports the result, success or failure. Ball O can be tossed
repeatedly, but we will start with one round. Based on the result, Bayes
calculates the probability that θ is in a particular range, say between 0.5
and 1, which is the probability that the first ball W made it more than
halfway across the table.
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Figure 7: I like to think of the balls that Bayes imagines throwing as pool
balls with ball W as the (white) cue ball, and ball O as the (orange) 5-ball.

So, here is the billiards problem:

A cue ball W is tossed from the right end onto a billiards table and
ends up at an unknown distance θ from the right. Then an (orange)
5-ball O is tossed and ends up nearer to the right end than the cue
ball W . This is arbitrarily called a “success”. Given this one success,
what is the probability that the cue ball W made it more than
halfway across the table? In other words what is P (0.5 < θ < 1)?

Again, the billiards problem is more difficult than the coin problem. We
have moved from a discrete uniform probability distribution P (θ) to a
continuous uniform probability density function p(θ).

I will use upper case P (θ) for the discrete probability distribution, also
called the probability mass function (PMF), and I will use lower case p(θ)
for the continuous probability density function (PDF). If you are new to
PDFs, they take some getting used to. Like a probability, a probability
density is always greater than or equal to 0, p(θ) ≥ 0, but it doesn’t have
to be less than 1. In a figure, probability is no longer represented by the
height of a discrete point but by the area under the continuous PDF
(P (θa < θ < θb) =

∫ θb
θa
p(θ)dθ). For the PDF to be valid, the area under it

over the entire range of θ must equal 1 (
∫ +∞
−∞ p(θ)dθ = 1).
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Figure 8: This is the uniform probability density function (PDF) for the
variable θ prior to any trials. The probability that θ is between any two
values is the area under the PDF between those two values.

6 Bayes’s Rule with Different Notation, Prior
and Posterior

In the billiards problem, θ can take on any value between 0 and 1, and the
discrete probability distribution has been replaced by a continuous
probability density function (PDF). Bayes’s Rule still applies, but let’s
change the variables and notation. Our one-step derivation of Bayes’s Rule
resulted in

P (A|B) =
P (B|A)× P (A)

P (B)

Let θ be any quantity about which we are interested, such as the
single-toss probability of a success, and replace A with θ. Let “data” be
what we observe (or have reported to us), such as ball O ending up to the
right of ball W , and replace B with data. Finally, to remind ourselves that
we are working with continuous probability density functions, replace
upper case P (·) with lower case p(·). Bayes’s Rule is then

p(θ|data) =
p(data|θ)× p(θ)

p(data)

This is how Bayes’s Rule is presented in A Student’s Guide to Bayesian
Statistics (Lambert 2018).
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Prior to obtaining the data, the PDF of θ is p(θ), so this is called the
“prior”.

prior = p(θ)

Remember, this is a continuous PDF, not a discrete distribution.

After obtaining the data, the PDF of θ is p(θ|data), so this is called the
“posterior”.

posterior = p(θ|data)

Again, this is a continuous PDF, not a discrete distribution.

Besides the prior, the other term in the numerator of the formula is
p(data|θ), which is called the “likelihood”.

likelihood = p(data|θ)

The likelihood function is uncontroversial. Bayesians and Frequentists
generally agree on p(data|θ), but it also takes some getting used to. The
data is fixed but θ varies over its range of possible values (e.g., between 0
and 1). Like a probability, p(data|θ) is greater than 0, but unlike the
probabilities in a probability distribution, the likelihoods in a likelihood
function do not sum to 1. (See EndNote #2.)

The weighted sum of p(data|θ)× p(θ) over all possible θ is the denominator
in the formula known as Bayes’s Rule. We will just call it “the
denominator”.

denominator = p(data)

This represents the probability of the observed data given each hypothesis
averaged over all possible hypotheses. Calculating the denominator can be
challenging. Ironically, Bayes’s essay does not include or focus on the
formula that ended up bearing his name, but it does include and focus on
the formula for the denominator in the billiards problem. For interested
readers:

The formula for the denominator in a game of Bayes’s billiards with
s successes and f failures in s+ f = n trials is

p(data = s, f) =
1

s+ f + 1
=

1

n+ 1
.

For more on this formula, see Endnote #3.
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Perhaps this formula for the denominator should be called Bayes’s Rule,
but it’s not. Again, the formula widely known as Bayes’s Rule is

p(θ|data) =
p(data|θ)× p(θ)

p(data)

Bayes’s Rule rule simply says that what we think now (the posterior)
depends on what we thought before (the prior) and what we learned (the
data).

7 Solving Bayes’s Billiards Problem

Since ball W could end up anywhere on the billiard table, before getting
the data, the prior is

p(θ) = 1 for 0 < θ < 1

Remember, this is a continuous PDF, not a discrete probability.

The data = success×1, so the the likelihood is

p(data|θ) = p(success×1 | θ) = θ

The data is fixed at success×1 but θ is variable. Say that ball W ends up
seven-tenths of the way across the table. Then, θ = 0.7 and
P (success×1|θ) = 7

10 .

Since θ is equally likely to be any value between 0 and 1, symmetry
requires that the overall probability of a success must be 1

2 .

p(data) = p(success×1) =
1

2

(See Endnote #4.)

We have the prior, the likelihood, and the denominator, so we use Bayes’s
Rule to get the posterior:

p(θ|data) =
p(data|θ)× p(θ)

p(data)

=
θ × 1

1
2

= 2θ for 0 < θ < 1
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In summary, after one success, the posterior PDF for θ is

p(θ|success×1) = 2θ for 0 < θ < 1

Figure 9: This is the posterior probability density function (PDF) for the
variable θ after seeing one success. The probability that θ is between any
two values is the area under the PDF between those two values. The area
under the curve from θ = 0.5 to θ = 1 is 3

4 .

We are to find the probability, after one success, that ball W made it more
than halfway across the table, that is P (0.5 < θ < 1.0). This is the area
under the posterior PDF p(θ|data) between θ = 0.5 and θ = 1. We can see
that this probability is 3

4 .

P (0.5<θ< 1 | success×1) =
3

4

One way to see this is to subtract from 1 the area of the triangle from
[θ = 0, p(θ) = 0] to [θ = 0.5, p(θ) = 1]). The area of the triangle is 1

4 , so our
answer is 1− 1

4 = 3
4 . For the record, I wouldn’t have gotten the billiards

problem right if it had been given to me in the job interview.

Pierre Simone Laplace (1774), writing 11 years after the Bayes/Price essay
and apparently unaware of it, was more interested in the expected value or
mean, E(θ | heads), which is 2

3 . (Stigler, 1986a, 1986b) By the way, in his
1774 memoir, Laplace went farther in analysing the problem than Bayes
and Price, but he didn’t present the formula now known as Bayes’s Rule
either.
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8 Unclear Priors

Nothing so far in the coin problem or the billiards problem would cause
any debate between a Frequentist and a Bayesian. They would both use
Bayes’s Rule to get to the same answer. In the coin problem, after seeing
one heads, the probability of a 2-headed coin is 2

3 . In the billiards problem,
after getting one success, the probability that ball W made it more than
halfway across the table is 3

4 . The disagreement between Frequentist and
Bayesian statistics can’t be about the validity of the formula known as
Bayes’s Rule. It isn’t about about the likelihood either. Under explicit
assumptions about how the data is generated, P (data|θ) is clear. In the
coin problem, the probability of heads given that the coin is fair is 1

2 . In
the billiards problem, if ball W ended up seven-tenths of the way across
the table, the probability that Ball O ends up to the right of W must be
7
10 . Frequentists use the same likelihoods as Bayesians do. The debate
focuses on the prior.

In the coin problem, the bag contains 3 coins, one fair, one 2-headed, and
one 2-tailed, but what if the bag contains an unspecified number of fair,
2-headed, and 2-tailed coins? Now, after observing one flip that comes up
heads, what is the probability that the coin is 2-headed?

I can think of three options:
1) Say something low, like 0.0002, because I know 2-headed coins are rare.
2) Say two-thirds, because that’s what I get from a prior in which fair,
2-headed, and 2-tailed coins are equally likely.
3) Dodge the question.

Option 1 uses information that wasn’t given and is sometimes referred to
as using a “subjective prior”. I have heard of 2-headed coins and decided
that, before it was flipped, this coin had a 1-in-10,000 chance of being
2-headed.

Option 2 counts three hypotheses (fair, 2-headed, and 2-tailed) and uses a
prior in which they are equally likely. I will call this the “equal priors”
approach, although it has been called the principle of insufficient reason or
the principle of indifference (Keynes 1921 page 44, Jaynes 2003 page 40)

Option 3 (dodging the question) is the Frequentist approach.
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In the billiards problem, the probability θ is the distance of ball W from
the right end of the billiard table and is thus equally likely to be any
number between 0 and 1, but what if θ is an unspecified function of the
distance? Now, after a success, I’m asked the probability that θ is between
0.5 and 1. (See Endnote #5.) Since I can’t think of any better place to
start, I would still assume a uniform prior, and say P (0.5<θ<1) = 3

4 .

The section of Bayes’s essay called the scholium (i.e., explanation) has
been taken by many, including the brilliant, truculent Frequentist, R.A.
Fisher (1922 p.324), to say that a uniform prior is appropriate when one
knows nothing at all about the success probability of a binary event
(Stigler, 1982). Certainly, Bayes’s billiards problem starts with a uniform
prior. So, the term “Bayesian” has been identified with the use of equal
priors (McGrayne, 2011 page 87). Nowadays, “Bayesian” does not mean
“equal priors” but refusal to ignore the prior. For modern Bayesians, the
prior is not necessarily uniform, but it must be specified. As we shall see,
forcing oneself to specify a prior comes with a different understanding of
what probability means. Meanwhile, the Frequentist approach is to avoid
the prior completely.

9 Frequentist Approach

Frequentists don’t like the idea of going outside the boundaries of a
problem as in Option 1 above, because that option isn’t always available
when the question isn’t about a coin. They also don’t like the equal priors
approach, as in Option 2. So here is what I consider to be the Frequentist
approach to the coin problem.

I know the likelihood function:

P (heads | fair) = P (data | θ=0.5) =
1

2

P (heads | 2-headed) = P (data | θ=1.0) = 1

P (heads | 2-tailed) = P (data | θ=0.0) = 0

I could hypothesize that the coin is fair. Call this hypothesis H0. Then I
could compare P (data|H0) to an arbitrary threshold for rejecting H0. For
example, we might choose a threshold of 0.05, so one rejects H0 if
P (data|H0) < 0.05. Since P (heads | fair) = 0.5, and 0.5 > 0.05, I can’t
reject the hypothesis of a fair coin.
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I could also list all of the hypotheses that I cannot reject and call this list a
“confidence interval”. The list would include “fair” (θ = 0.5) and
“2-headed” (θ = 1), but not “2-tailed” (θ = 0). After seeing heads come
up, both common sense and Bayes’s Rule tell me that the probability of a
2-tailed coin is now 0. The probability that the coin is 2-headed must be
at least as great as it was before I saw heads come up, and unless the prior
probability of a 2-headed coin was 0, it had to increase by twice as much
as the probability of a fair coin.

In the billiards problem, θ can have any value between 0 and 1. After one
success, as a Frequentist, I could generate a confidence interval on θ that
includes values of θ that I cannot reject. By a common criterion, I can
reject θ < 0.05, so I could report a confidence interval for θ of 0.05 to 1.

The coin problem asks for the probability of the 2-headed coin. I responded
by rejecting the hypothesis that the coin is 2-tailed, but not rejecting the
hypothesis that it was fair or that it was 2-headed. The billiards problem
asks for the probability that ball W is more than halfway across the table.
I responded with a 95% confidence interval from 0.05 to 1.0. Do you see
why I say that the Frequentist approach is to dodge the question?

10 More Data

As long as we have a clear prior, we can use Bayes’s Rule with more data.
In the coin problem, perhaps the selected coin is flipped twice and comes
up heads both times. Since P (2-tailed) = 0, we can ignore the two-tailed
coin. Here are the steps:
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P (2-headed | heads×2) =

=
P (heads×2 | 2-headed)× P (2-headed)

P (heads×2)

=
P (heads×2|2-headed)× P (2-headed)

P (heads×2|fair)× P (fair) + P (heads×2|2-headed)× P (2-headed)

=
1× 1

3

( 1
22
× 1

3) + (1× 1
3)

=
1
3

( 1
22
× 1

3) + 1
3

Cancel the 1
3 and we get

1
1
4 + 1

=
4

5
.

What if it comes up heads three times?

1
1
8 + 1

=
8

9

s times?
1

1
2s + 1

=
2s

1 + 2s

In the billiards problem, θ can be any number between 0 and 1. We are
asked the probability, after s successes, that ball W is more than halfway
across the table, that is, the probability that θ is in the interval between
0.5 and 1. Richard Price covers this in the first part of his appendix to
Bayes’s essay and gives the following formula:

P (0.5<θ≤1 | s) =
2s+1 − 1

2s+1

(See Endnote #6)

So, if we have seen one success (s = 1), P (0.5 < θ < 1) = 3
4 ; for two

successes (s = 2), it’s 7
8 ; for s = 3, 15

16 , and so on.

But what if the prior isn’t clear? We are back to 1) using a subjective
prior based on information that wasn’t given in the problem, 2) assuming a
uniform prior, or 3) dodging the question with a Frequentist approach.
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11 Frequentist Approach to More Data

In the frequentist approach to the coin problem (using a significance level
of 0.05), we can reject the hypothesis that the coin is fair if we see 5 heads
in a row, because

P (Heads×5 | Fair) =
1

25
=

1

32
= 0.03125 < 0.05.

In the billiards problem, θ can be any number between 0 and 1. We need
the range of hypothesized values for θ that we would reject if we see 5
successes in a row. This turns out to be θ < 0.55. (See Endnote #7)

So, the Frequentist confidence interval for θ after seeing 5 successes in a
row is 0.55 to 1. This is a one-sided 95% confidence interval, which is
appropriate in this situation. Frequentists reject a hypothesis (such as
θ = 0.5) when, under this hypothesis, the probability of the observed data
or more extreme results is less than a critical value such as 0.05. I have not
had to worry about this because there is no more extreme result than all
successes and no failures. Note that the confidence interval on θ (0.55 to 1)
does not include θ = 0.50, meaning that, after 5 successes in a row, we can
reject the hypothesis that θ = 0.5 at the 0.05 significance level. (See
Endnote #8. )

If you saw a coin come up heads 5 times in a row, would you conclude that
it was not a fair coin but rather a 2-headed coin? You probably would if
you knew the coin was drawn from a bag containing 3 coins: one fair, one
2-headed, and one 2-tailed. The probability that it is a 2-headed coin is
then

25

25 + 1
= 32/33 = 0.97

On the other hand, if you thought the coin was taken out of normal
circulation, you would likely insist on seeing more than 5 heads in a row
before concluding that it was biased. Even though the observed data (5
heads) is 32 times more likely with a 2-headed coin than a fair coin, you
start out with such a low prior probability of 2-headed that increasing it
substantially (by approximately a factor of 32) leaves you with a posterior
probability that is still low. If you specify the prior probability that the
coin is fair versus 2-headed, you can calculate the posterior probability
exactly using Bayes’s Rule. For example, starting with a 1-in-10,000 chance
of a 2-headed coin, the posterior probability is 32 in 10,000. But specifying
that prior probability seems subjective and makes us uncomfortable.
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The Frequentist response would be to say something like “extreme claims
require extreme evidence” and, on an ad hoc basis, set the significance
level to 0.001, thereby requiring 10 heads in a row (because
1/210 = 1/1024 < 0.001. For the Bayesian starting with a 1-in-10,000
chance of a 2-headed coin, 10 heads in a row would raise the chance to
10%. Whether I set the significance level to 0.001 or start with a
1-in-10,000 chance of a 2-headed coin, I have made a subjective judgement.

12 Frequentist v. Bayesian

Frequentist statistics avoids priors and focuses on the uncontroversial
likelihood function. A hypothesis is rejected if the probability of the
observed data or more extreme results is less than some arbitrary
threshold. In Bayesian statistics, you can’t ignore the prior and must
consider the probability of all competing hypotheses. This leads to a
fundamental disagreement about the nature of probability. Is it an
objectively measurable long-term frequency or the plausibility of a
proposition based on available information?

For example, in the coin problem, if I don’t have to specify a prior, all I
need is the probability that a specific coin will come up heads. This might
be something I could determine by experiment, flipping the coin many
times and counting how often it comes up heads. But if I have to specify
the probability that the coin is of a specific type, my answer depends on
my state of information. If I know that it was selected from 3 coins in a
bag, then the probability of selecting a specific coin is one-third. If I don’t
know where the coin came from, but I know that 2-headed coins exist, I
might place the probability of a 2-headed coin at 1 in 10,000. That isn’t
based on an experiment.

In the billiards problem, ball W is equally likely to stop anywhere along
the length of the table, so the prior is uniform. But for a different binary
event, determining the prior will be difficult. Still, the Bayesian does it,
using all available information, while the Frequentist avoids it. Again, for
the Bayesian, probability is a state of knowledge, while the Frequentist
tries to equate it with a long-run frequency.
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I probably haven’t been fair to the Frequentists, because I agree with the
Bayesians that probability “describes only a state of knowledge, and not
anything that could be measured in a physical experiment” (Jaynes 2003
p. 44). Sometimes, in determining plausibility, it helps to do a thought
experiment and imagine a long series of experiments (coin flips) or an
infinite population (all the coins in circulation). But in the end,
probability is still a rational assessment of a proposition’s plausibility
based on all available information.

Bayesians are correct when they say that one can’t evaluate a hypothesis
based only on how likely the observed data would be if the hypothesis were
true. Calculating this likelihood is helpful, but we still must consider the
prior probability of the hypothesis and of other possible explanations for
the observed data.

13 Conclusion

Bayes didn’t write Bayes’s Rule, but nobody disputes that it is
mathematically correct and appropriate when priors are clear. When
priors are unclear, experience-based, subjective priors and equal priors are
problematic, but they can’t be avoided. Historically, “Bayesian” was
interpreted as favoring equal priors. Nowadays, “Bayesian” means refusal
to ignore the prior and acceptance of probability as a numerical
representation of a proposition’s plausibility.

14 Endnotes

Endnote #1 About forming the possessive of singular nouns
If you think I should be forming the possessive of our author’s surname in
some way other than “Bayes’s”, read Strunk and White, Page 1, Rule 1.
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Figure 10: Strunk W, White EB. The elements of style. 3d ed. New York:
Macmillan; 1979. Page 1.

Have things changed? Not according to Benjamin Dreyer, Copy Chief at
Random House, who wrote this in 2019:

. . . you’ll save yourself a lot of thinking time by not thinking about
those s’s and just applying them. I’d even urge you to set aside the
Traditional Exceptions for Antiquity and/or being the Son of God
and go with: Socrates’s, Aeschylus’s, Jesus’s .

Dreyer B. Dreyer’s English: an utterly correct guide to clarity and
style. First edition. New York: Random House; 2019. p. 39.

And what did Richard Price write in 1763, when he wanted to take over
with his abridgement and end the part of the essay written by Bayes?

Endnote #2 Fine Points about the Likelihood Function
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The likelihood function p(data|θ) is always ≥ 0. In Bayes’s billiards
problem, it is also ≤ 1 because, for a given value of θ, it is a discrete
binomial probability. If, for a given value of θ, the data is distributed
according to a PDF instead of a discrete probability distribution, then
p(data|θ) can be > 1. Also, in the billiards problem, θ is a continuous
variable, so the likelihood function is continuous. Instead of summing the
likelihoods over all possible discrete values of θ, we would integrate over θ
between 0 and 1. The integral still wouldn’t be 1, as would be the case if
p(data|θ) were a valid PDF instead of a likelihood function. If data =
heads ×1, then p(data|θ) = θ, which does not integrate to 1. See Endnote
#4 .

Endnote #3 Formula for the denominator with s successes and f
failures
Here again is the formula for the denominator p(data) after seeing s
successes and f failures in n = s+ f trials.

p(data = s, f) =
1

s+ f + 1
=

1

n+ 1

This formula appears in a footnote to a section of the essay called the
scholium (explanation), but although the formula appears in a footnote,
the idea is central to the essay: prior to doing s+ f = n trials, the
probability of s successes is 1

n+1 regardless whether s is 0, 1, 2, ..., or n.

By definition, the denominator is p(data|θ)p(θ) integrated over all possible
θ:

p(data = s, f) =

∫ 1

0

(
s+ f

s

)
θs(1− θ)fp(θ)dθ.

Since p(θ) = 1,

p(data = s, f) =

∫ 1

0

(
s+ f

s

)
θs(1− θ)fdθ.

To show that ∫ 1

0

(
s+ f

s

)
θs(1− θ)fdθ =

1

s+ f + 1
,

we could integrate by parts repeatedly until we reached(
s+ f

s

)
(f)(f − 1)...(2)(1)

(s+ 1)(s+ 2)...(s+ f − 1)(s+ f)

∫ 1

0
θs+f (1− θ)0dθ,
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which is
1

s+ f + 1
.

Bayes didn’t use integration by parts, but Laplace did in his 1774 memoir.
(See references).

Endnote #4 The denominator p(data) when data = success ×1

p(data) =

∫ 1

0
p(data|θ)× p(θ) dθ

=

∫ 1

0
θ × 1 dθ

=
θ2

2

∣∣∣∣1
θ=0

=
1

2

Or, we could use the formula for the denominator as a function of s = 1
success and f = 0 failures:

p(data : s = 1, f = 0) =
1

s+ f + 1

=
1

1 + 0 + 1

=
1

2

Endnote #5 Another potential function of θ to use as a prior
R.A. Fisher (1922, p. 325), made an argument something like this. In the
billiards problem, if d is the distance of ball W from the right end of the
billiard table, we know θ = d. But in another situation, it might be

θ = cos−1(1−2d)
π . (See also, Stigler 1982 page 252). Then, after one success,

P (0.5 < θ < 1) = 0.68, not 0.75.

Endnote #6 Derivation of Price’s formula
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P (0.5<θ≤1 | s) =

∫ 1
0.5 θ

sdθ∫ 1
0 θ

sdθ

=
θs+1/(s+ 1)

∣∣1
0.5

θs+1/(s+ 1)
∣∣1
0

= 1− 0.5s+1

=
2s+1 − 1

2s+1

Endnote #7 Confidence interval on θ after 5 successes and no
failures

θ5 < 0.05

5 ln θ < ln (0.05)

ln θ <
ln (0.05)

5

A fun fact is that ln (20) = 3.00 and ln ( 1
20) = ln (0.05) = −3.00, so

ln θ <
−3

5

θ < e−
3
5

θ < 0.55

Endnote #8 Confidence interval on θ after s successes and no
failures
If the number of successes k is substantially greater than 5, then we can
approximate e−

3
k with 1− 3

k . For example, if k = 10, the lower bound of
the confidence interval is approximately 1− 3

10 = 1− 0.30 = 0.70. Thus,
after 10 successes in a row, the confidence interval on θ is roughly 0.7 to 1.
(With k = 10, the approximation is still rough. e−3/10 = 0.74, not 0.70.)
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