6.2 ABCD2 Score

The ABCD2 Score was developed to estimate the risk of stroke in patients after a transient ischemic attack (TIA, a brief period of neurological symptoms due diminished blood flow to the brain).{Johnston, 2007 #1078}

Risk Factor	Points
Age	
\geq 60 years	1
Blood Pressure	
Systolic ≥ 140 mm Hg or Diastolic ≥ 90 mm Hg	1
Clinical features of the TIA	
Unilateral weakness (with or without speech impairment)	2
Speech impairment without unilateral weakness	1
Duration	
TIA duration ≥ 60 minutes	2
TIA duration 10-59 minutes	1
Diabetes	
Diabetes diagnosed by a physician	1
Total ABCD2 Score	0-7

For your information, here is how the ABCD2 score is calculated.

The 2-day risk of stroke by ABCD2 score is shown below:

Score	% of TIA Patients	2-day Stroke Risk
0-3	34%	1.0%
4-5	45%	4.1%
6-7	21%	8.1%

One of the main reasons for hospitalizing a patient after TIA is to enable rapid treatment with thrombolytics (to dissolve blood clots) if the patient has a subsequent stroke in the next 2 days.

a) Assume you are willing to admit 25 patients to the hospital for 2 days unnecessarily in order to avoid discharging one from the emergency department who goes home to have a stroke in the next 2 days. What is your ABCD2 score cutoff for hospitalization?

- b) The above table of 2-day stroke risks can be converted into an ROC table and an ROC curve. Without doing any calculations, what do you expect the AUROC to be?
 - i) < 0.5
 - ii) 0.5 0.74
 - iii) 0.75 0.89
 - iv) 0.9 1

We will convert the table of 2-day risks above into an ROC table and calculate the area under it.

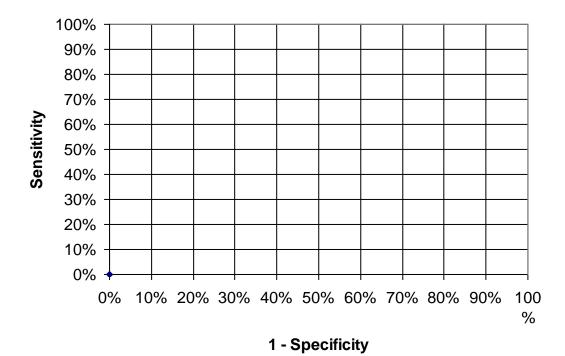
First, order the results from most to least abnormal:

Score	% of TIA Patients	2-day Stroke Risk
6-7	21%	8.10%
4-5	45%	4.10%
0-3	34%	1.00%

Next, calculate the individual cell percentages. To get the D+ column, we multiply the proportion of patients in each risk stratum by the 2-day stroke rate in that stratum. Thus, e.g. if we had 10,000 patients, 21% (=2100) would have a score of 6-7 and 8.1% of those 2100 = 170 would have a stroke. So the top D+ cell would be 170/10,000 = 1.70%.

Score	D+	D-	% of TIA Patients
6-7	1.70%	19.30%	21%
4-5	1.85%	43.16%	45%
0-3	0.34%	33.66%	34%
Total	3.89%	96.11%	100.00%

Then, calculate the column percentages. For example, for the top D+ cell, 1.70%/3.89% = 43.77%.


Score	D+	D-
6-7	43.77%	20.08%
4-5	47.48%	44.90%

0-3	8.75%	35.02%
Total	100.00%	100.00%

Finally, change them to cumulative percentages.

Score	D+	D-
≥ 6	43.77%	20.08%
≥4	91.25%	64.98%
≥ 0	100.00%	100.00%

c) Use the above ROC Table to plot the ROC curve on the grid below.

- d) If you didn't admit any TIA patients ("No Treat"), what proportion would have a stroke within 2 days? (In part (h) below, we will refer to this as P, overall risk, i.e. the proportion of the population who ultimately develop the outcome within the specified time period.)
- e) If you admitted all TIA patients ("Treat All"), what proportion would you admit unnecessarily?

Remember that an unnecessary admission of a TIA patient who doesn't have a stroke in the next 2 days is 1/25 as bad as failing to admit someone who does have a stroke in the next 2 days.

- f) Calculate the Net Benefit of the **Treat All** strategy relative to treat none. Recall Net Benefit = (Patients Treated Appropriately $C/B \times Patients$ Treated Unnecessarily)/(All Patients) and explain in words what it means.
- g) Calculate the Net Benefit of a hospitalization strategy using the ABCD2 cutoff in (a). Is it higher or lower than the NB of the "Treat All" strategy?