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What did Bayes really say?

Michael A. Kohn, MD, MPP c©2022

6/16/2022

1 Introduction

The Reverend Thomas Bayes (1701-1761) is famous for “An Essay
Towards Solving A Problem in the Doctrine of Chances”, which was
published in the Royal Society of London’s Philosophical Transactions on
23 December 1763, more than two and a half years after Bayes’s death. (If
you think I should be forming the possessive of Bayes in some way other
than “Bayes’s”, see Endnote #1.) His friend Richard Price found the essay
among Bayes’s papers and sent it to the Royal Society along with an
introductory letter, footnotes, an abridgement of the latter part of the
essay, and an appendix containing numerical examples.

Figure 1.1: The title of the essay and first sentence of Richard Price’s intro-
ductory letter. John Canton was secretary of the Royal Society of London.
F.R.S means Fellow of the Royal Society.
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The essay as originally published is 49 pages – 24 pages written by Bayes
and 25 by Price: introductory letter (6 pages), abridged conclusion (4
pages), and appendix (15 pages). It is difficult to read today because, to
us, the 18th century English seems stilted and the mathematical notation
is unfamiliar. So, I have tried to “translate” it into modern language and
mathematical notation.

The essay is not focused on what we now call Bayes’s Rule:

P (A|B) =
P (B|A)P (A)

P (B)
.

It is about the more specific problem of how to draw inferences about the
probability of a binary event by observing the number of times it does and
doesn’t happen.

Bayes starts with a statement of the problem. Next, he provides 7
definitions, including the definition of “inconsistent” (disjoint) events,
“contrary” (complementary) events, and independent events. In Definition
5, he defines the probability of an event as the ratio of its expected value
to the value realized if the event occurs.

After the definitions, Bayes presents a set of 6 propositions, including what
most modern textbooks (following Kolmogorov) present as axioms, as well
as the complement rule, the multiplication rule, and the product rule for
independent events, but he does not explicitly present the rule that now
bears his name. In Prop. 7, he proceeds to the binomial distribution.

This introductory material might be considered the first textbook coverage
of the definitions, axioms, and basic rules of probability theory. Richard
Price’s introductory letter says, “Mr Bayes has thought fit to begin his
work with a brief demonstration of the general laws of chance. His reason
for doing this... was not merely that his reader might not have the trouble
of searching elsewhere for the principles on which he has argued, but
because he did not know whither to refer him for a clear demonstration of
them.” De Moivre’s “Doctrine of Chances” (1718, 1738, and 1756) is
sometimes called the first probability textbook, but if Bayes thought it
provided a clear demonstration of the “general laws of chance”, he would
have known “whither to refer” the reader.

One minor problem is that the notation
(
n
k

)
for “n choose k” did not exist,
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so Bayes relies on the well-known binomial expansion of (a+ b)n,

an + nan−1b+
n(n− 1)

2
an−2b2 +

n(n− 1)(n− 2)

3 · 2
an−3b3 + ...+ nabn−1 + bn,

which we now write as(
n

n

)
anb0+

(
n

n− 1

)
an−1b1+

(
n

n− 2

)
an−2b2+

(
n

n− 3

)
an−3b3+...+

(
n

1

)
a1bn−1+

(
n

0

)
a0bn

or
n∑
k=0

(
n

k

)
akbn−k.

Bayes refers to
(
n
k

)
as “the coefficient of the term in which occurs akbn−k

when the binomial (a+ b)n is expanded”. In this quoted phrase, I have
already substituted k for p and n− k for q, because of another potential
source of confusion for modern readers....

Today, we often present the binomial distribution this way:

If k is the number of successes in n binary trials with success
probability p and failure probability q = 1− p, then the probability
mass function (PMF) of k is given as follows:

BinomPMF (k;n, p) = P (k;n, p) =

(
n

k

)
pkqn−k k = 0, 1, 2, ..., n

Unfortunately for those of us accustomed to p as the probablity of a
success and q = 1− p as the probability of a failure, Bayes used p as the
number of successes, where we now often use k, and q as the number of
failures, where we now often use n− k. When I translate Bayes’s original
text, I use θ for the probability of a success and, when I need it, γ = 1− θ
for the probability of a failure. I still use k for the the number of successes
and, when I need it, j = n− k for the number of failures. The binomial
distribution completes Section 1 of the essay.

In the second section, Bayes describes a hypothetical square table onto
which he imagines throwing first ball W and then ball O repeatedly. I will
follow many others and call his table a billiards table, although Bayes
never mentions billiards. He measures the distance of ball W from the
right side of his table, so I will assume that balls are thrown onto the
billiards table from the right end, not the left end.
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Yet another potential source of confusion is that the horizontal axis in
Bayes’s figures goes from 0 on the right to 1 on the left, which is the
reverse of the way we usually do it now. For example, he did a free hand
drawing of the function xk(1− x)j for x from 0 to 1. Here is how it would
look with with k = 4 and j = 6.

Figure 1.2: In Bayes’s figures, the horizontal axis goes from 0 on the right
to 1 on the left. This is x4(1− x)6. The maximum is at x = 0.4, which is to
the right of midline.

Bayes’s key insight was that the area under the curve xk(1− x)j for x from
0 to 1 is

1(
k+j
k

)
(k + j + 1)

.

For example, the area under the curve with k = 4 and j = 6 in Figure 1.2 is

1(
10
4

)
(11)

=
1

(210× 11)
=

1

2310
= 0.0004329.

As we shall see, Bayes first gives what Harvard statistics professor Joseph
Blitzstein calls a“story proof” (Blitzstein page 382) and then a derivation
using algebra and calculus, which Bayes calls “fluxions”.

Towards the end of the second section, Richard Price wrote, “Thus far Mr.
Bayes’s essay.” The rest of the section is Price’s abridgement of what
Bayes wrote. Price also added an appendix with numerical examples.
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Read on to find out what Thomas Bayes really said and what Richard
Price added. I present the essay in small sections of the original text,
followed by my translation into the modern equivalent. I also intersperse
explanatory comments. If a comment seemed too long, I moved it to an
endnote. I finish with annotated references.

2 Problem and Definitions

Problem

Comment
Bayes’s statement of the problem is clear: What can we infer about the
probability of a binary event by observing the number of times it does and
doesn’t happen?

Original text
Given the number of times in which an unknown event has happened and
failed: Required the chance that the probability of its happening in a single
trial lies somewhere between any two degrees of probability that can be
named.

Modern equivalent
Given: that n independent binary trials with unknown probability of
success θ result in k successes and n− k failures.
Required: the probability that θ lies in the interval between θ1 and θ2.

Comment
Bayes assumes that the prior distribution of θ is the uniform distribution
between 0 and 1; θ ∼ Unif(0, 1).

Definitions

Comment
After presenting the problem, Bayes starts off with 7 definitions.

Today’s textbooks, except for Jaynes (see references), use the notation of
set theory. A ∩B means that events A and B both occur; A ∪B means
that at least one of A and/or B occurs. They introduce a sample space S of
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all possible events and a probability function P that takes an event A ⊆ S
as input and returns P (A), a real number between 0 and 1, as output.

Bayes preceded the use of set notation for probability definitions by more
than 150 years. As we will see in his Definition 5, he defines the
probability of an event as the ratio of its expected value to the value
realized if it occurs. But he covers the same points about probability as do
today’s textbooks.

Original text
Definition 1. Several events are inconsistent when, if one of them happens,
none of the rest can.

Modern Equivalent
We now use “disjoint” instead of “inconsistent”. Saying that events are
disjoint means that they are mutually exclusive.

Original text
2. Two events are contrary when one, or other of them must; and both
together cannot happen.

Modern Equivalent
We now use “complementary” instead of “contrary”. The complement of
event A is Not(A), which I will denote Ac.

Original text
3. An event is said to fail, when it cannot happen; or, which comes to the
same thing, when its contrary has happened.
4. An event is said to be determined when it has either happened or failed.

Comment
Definitions 3 and 4 do not require translation or elaboration.

Original text
5. The probability of any event is the ratio between the value at which an
expectation depending on the happening of the event ought to be
computed, and the value of the thing expected upon its happening.

Modern Equivalent
The probability of an event is the ratio of its expected value to the value
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realized if the event occurs.

Comment
Later, Bayes will talk about receiving N if event A occurs. Definition 5
says that, if the expected value of event A is E(A), then P (A) = E(A)/N .
He will denote E(A) with a and therefore P (A) = a/N . While Bayes
defines probability as the ratio of expected value to amount received,
essentially all others define expected value as probability times amount:
E(A) = P (A)×N .

When Bayes talks about receiving a value N , he means utility, not
monetary value. (See Endnote #2.) Awkwardly, he assumes all events
result in receiving N . If events A, B, and C all result in N and have
expected values a, b, and c, respectively, then P (A) = a/N , P (B) = b/N ,
and P (C) = c/N .

Bayes’s definition is related to indicator random variables and what
Blitzstein (p. 164) calls the “fundamental bridge” between probability and
expectation. If indicator random variable IA = 1 when event A occurs and
IA = 0 when A fails to occur, then E(IA) = P (A). For Bayes, this isn’t a
bridge between probability and expectation, it’s the definition of
probability. You can see this, without loss of generality, by setting his
N = 1. In short, Definition 5 defines the probability of an event as the
expected value of its indicator variable.

Original text
6. By chance I mean the same as probability.
7. Events are independent when the happening of any one of them does
neither increase nor abate the probability of the rest.

Comment
Definitions 6 and 7 do not require translation or elaboration. On to the
propositions...

3 Propositions 1 - 7

Comment
It is interesting to note that Bayes covers the now standard probability
axioms either implicitly or explicitly.
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Prop. 1 [Axiom 1: Sum Rule for Disjoint Events]

The first part of Bayes’s first proposition, which I will call the “sum rule
for disjoint events”, is that the probability of one or the other of several
mutually exclusive events is the sum of their individual probabilities. He
introduces 3 disjoint (“inconsistent”) events A (1st event), B (2nd event),
and C (3rd event), each of which results in receiving value N , and with
expected values a, b, and c, respectively. Per Definition 5, he defines
probability as the ratio of expected value to amount received,
P (A) = a/N , P (B) = b/N , and P (C) = c/N .

Original text
When several events are inconsistent the probability of the happening of
one or other of them is the sum of the probabilities of each of them.

Suppose there be three such [inconsistent] events, and whichever of them
happens I am to receive N, and that the probability of the 1st, 2nd, and
3rd are respectively a/N, b/N, c/N. Then (by the definition of probability)
the value of my expectation from the 1st will be a, from the 2nd b, and
from the 3rd c. Wherefore the value of my expectations from all three will
be a + b + c. But the sum of my expectations from all three is in this
case an expectation of receiving N upon the happening of one or other of
them. Wherefore (by definition 5) the probability of one or other of them
is (a + b + c)/N or a/N + b/N + c/N. The sum of the probabilities of
each of them.

Modern equivalent
If A1, A2, ..., An are disjoint events, then

P

 n⋃
j=1

Aj

 =

n∑
j=1

P (Aj)

Saying that these events are disjoint means that they are mutually
exclusive: Ai ∩Aj = ∅. Bayes used “inconsistent” instead of “disjoint”.

Comment
I call this the sum rule for disjoint events to distinguish it from the
complement rule (below), which at least Jaynes (p. 33) refers to as “the
sum rule”. Although conventional expositions present the sum rule for
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disjoint events as an axiom, Jaynes (p. 38) deduces it from “simple
qualitative conditions of consistency”.

Prop. 1 (continued) [Axiom 2: P(S) = 1]

The next part of Prop. 1 is that at least one of all possible events must
occur, and therefore the union of all possible events has probability 1.

Original text
Corollary. If it be certain that one or other of the three events must
happen, then a + b + c = N. For in this case all the expectations together
amounting to a certain expectation of receiving N, their values together
must be equal to N.

Modern equivalent
Since S includes all possible events,

P (S) = 1

Comment
It is awkward that Bayes presents this using expectations instead of
probabilities, but as noted, P (A) = a/N , P (B) = b/N , and P (C) = c/N ,
so P (A) + P (B) + P (C) = 1. This proposition identifies certainty with a
probability of 1.

Implicit in the above axioms is that the probability of the empty set ∅ is 0.

P (∅) = 0

Prop. 2 [Complement Rule]

Comment
Again, Bayes’s exposition parallels what we now see in probability
textbooks, which introduce the complement rule right after the axioms and
then move to the definition of conditional probability and the
multiplication rule.

Original text
And from hence it is plain that the probability of an event added to the
probability of its failure (or of its contrary) is the ratio of equality. If a
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person has an expectation depending on the happening of an event, the
probability of the event is to the probability of its failure as his loss if it
fails to his gain if it happens.

Modern equivalent
If A and Ac are complementary events (i.e., Ac = Not(A)), then

P (Ac) = 1− P (A)

Prop. 3 [Multiplication Rule]

Original text
The probability that two subsequent events will both happen is a ratio
compounded of the probability of the 1st, and the probability of the 2nd
on supposition the 1st happens.

Modern equivalent

P (A ∩B) = P (A)P (B|A)

Comment
This is the multiplication rule. Bayes presents this first and then the
definition of conditional probability as a corollary. Most modern textbooks
(again, except for Jaynes) present them the other way around.

Original text
COROLLARY. Hence if of two subsequent events the probability of the 1st
be a/N, and the probability of both together be P/N, then the probability
of the 2nd on supposition the 1st happens is P/a.

Modern equivalent
This is the definition of conditional probability. If A and B are any two
events in the sample space S and P (A) 6= 0, then

P (B|A) =
P (A ∩B)

P (A)

Comment
Bayes presents a temporal sequence with A being “determined” (occurring
or failing to occur) before B. This is important in Props 4 and 5.
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Prop. 4 [One that doesn’t fit in]

Comment
This cryptic proposition with its even more cryptic footnote covers 2 pages
of the published essay. It does not have a modern textbook equivalent.
Here is the first sentence:

Original text
If there be two subsequent events to be determined every day, and each
day the probability of the 2nd is b/N and the probability of both P/N, and
I am to receive N if both the events happen the first day on which the 2nd
does; I say, according to these conditions, the probability of my obtaining
N is P/b.

Modern equivalent
Assume A and B are two events that can occur daily. I am to receive N if,
on the first day that B occurs, A also occurs. Let W be the event of
receiving N , i.e., the event of A occurring on the first day that B occurs.
P (W ) = P (A ∩B)/P (B)

Comment
Here is one explanation of Prop. 4. (Endnote #3 gives an alternative
explanation.) Let E(W ) be the expected value of this situation, which I
refer to as a “game”. On each day, there are four possible outcomes:
A ∩B, Ac ∩B, A ∩Bc, Ac ∩Bc . On Day 1, if both A and B occur
(A ∩B), I receive N and the game is over. If B occurs but A doesn’t
(Ac ∩B), I receive 0 and the game is over. If B doesn’t occur (A ∩Bc or
Ac ∩Bc), then I’m back to where I started. Bayes refers to this as “being
reinstated in my former circumstances”. This translates into the following
equation for the expected value E(W ):

E(W ) = P (A ∩B)×N + P (Ac ∩B)× 0 + (1− P (B))× E(W )

Let P (B) = b/N and P (A ∩B) = P/N .

E(W ) = P/N ×N + 0 + (1− b/N)E(W )

E(W )− (1− b/N)E(W ) = P

bE(W )

N
= P

E(W ) =
PN

b
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Bayes defines the probability of receiving N as the ratio of E(W ) to N , so
if P (W ) is the probability of receiving N ,

P (W ) =
P

b

Prop. 5 [Same as Prop 3 switching A and B]

Comment
Recall that Bayes thought of event A as being “determined” (occurring or
failing to occur) before event B. By repeating Prop 3 and switching A and
B, he gives us the probability that the earlier event A occurred based only
on knowing whether the later event B occurred. This is one step away
from what we now call Bayes’s Rule.

Original text
If there be two subsequent events, the probability of the 2nd b/N and the
probability of both together P/N, and it being first discovered that the
2nd event has happened, from hence I guess that the 1st event has also
happened, the probability I am in the right is P/b.

Modern equivalent
If A and B are any two events in the sample space S and P (B) 6= 0, then

P (A|B) =
P (B ∩A)

P (B)

Comment
From Prop 3’s multiplication rule, we know that P (B ∩A) = P (B|A)P (A),
so

P (A|B) =
P (B|A)P (A)

P (B)

Although this is what we think of as Bayes’s Rule, Prop 5 is as close as he
comes to saying it. It is just one of 7 propositions in this introductory
section on “the general laws of chance” before addressing the problem
stated at the beginning: inferring the probability of a binary event by
observing the number of times it happened and failed to happen.

Since, P (B) = P (B|A)P (A) + P (B|Ac)P (Ac), we could also write

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
.

13



I prefer the odds form of Bayes’s rule, which is derived as follows:

P (A ∩B) = P (B ∩A)

P (A|B)P (B) = P (B|A)P (A)

Similarly,

P (Ac ∩B) = P (B ∩Ac)
P (Ac|B)P (B) = P (B|Ac)P (Ac)

Dividing,

P (A|B)P (B)

P (Ac|B)P (B)
=

P (B|A)

P (B|Ac)
P (A)

P (Ac)

P (A|B)

P (Ac|B)
=

P (B|A)

P (B|Ac)
P (A)

P (Ac)

Some terminology:

P (A)

P (Ac)
= Odds(A) = prior odds

P (A|B)

P (Ac|B)
= Odds(A|B) = posterior odds

P (B|A)

P (B|Ac)
= LRA(B) = likelihood ratio for A of B

So,

P (A|B)

P (Ac|B)
=

P (B|A)

P (B|Ac)
P (A)

P (Ac)

Odds(A|B) = LRA(B)×Odds(A)

posterior odds = likelihood ratio× prior odds

Comment
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According to Dale (see references), John Maynard Keynes presented this
as Bayes’s Rule in his Treatise on Probability (1921). It nicely displays
“what we think now” (posterior odds) as the product of “what we thought
before” (prior odds) and “what we learned” (likelihood ratio). (For more
on the odds form of Bayes’s Rule, see Endnote #4.)

Prop. 6 [Product Rule for Independent Events]

Comment
Going from axioms to the complement rule to the multiplication rule to
Bayes’s Rule to the product rule for independent events (below) is the way
we present it today. Bayes differs by including Prop. 4 and by never
stating the rule that bears his name.

Original text
The probability that several independent events shall all happen is a ratio
compounded of the probabilities of each.

Modern equivalent
If events A and B are independent,

P (A ∩B) = P (A)P (B)

Original text
If there be several independent events, and the probability of each one be
a, and that of its failing be b, the probability that the 1st happens and the
2nd fails, and the 3rd fails and the 4th happens, etc. will be abba, etc. For,
according to the algebraic way of notation, if a denote any ratio and b
another, abba denotes the ratio compounded of the ratios a, b, b, a. This
corollary therefore is only a particular case of the foregoing.

Modern equivalent
In a sequence of independent binary trials with success probability p and
failure probability q = 1− p, the probability of a sequence of successes and
failures is given by multiplying all the individual probabilities. If the 1st
succeeds, the 2nd fails, the 3rd fails, and the 4th succeeds, the probability
of the sequence will be pqqp. This is a specific example of the general
definition of independence.

Comment
By introducing an independent event that can either occur or fail with a
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given probability, Bayes has covered what we now call the Bernoulli distri-
bution, so it is natural for him to proceed to the binomial distribution.

Prop. 7 [Binomial Distribution]

Original text
If the probability of an event be a, and that of its failure be b in each
single trial, the probability of its happening p times, and failing q times in
p+ q trials is Eapbq if E be the coefficient of the term in which occurs apbq

when the binomial (a+ b)p+q is expanded.

Comment
Here, Bayes uses a for the probability of success and b = 1− a for the
probability of failure. Later, he will use x and r = 1− x. Today, we
commonly use p and q = 1− p, but as I mentioned in the introduction,
Bayes uses p for the number of successes and q for the number of failures.
Instead of Bayes’s a and b, his later x and r, or our common p and q, I will
use θ and γ = 1− θ for the probabilities of success and failure, and I will
use k and n− k for the number of successes and failures. Also as
mentioned in the introduction, I use

(
n
k

)
as “the coefficient of the term in

which occurs akbn−k when the binomial (a+ b)n is expanded.”

Modern equivalent
In a sequence of n independent binary trials with success probability θ and
failure probability γ = 1− θ, the probability of k successes and n− k
failures is given as follows:

P (k;n, θ) =

(
n

k

)
θkγn−k

Comment
This is the probability mass function (PMF) of the binomial distribution.

BinomPMF (k;n, θ) =

(
n

k

)
θk(1− θ)n−k

Bayes does not discuss the cumulative distribution function (CDF) for the
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binomial distribution, but it’s just the sum of all the probabilities up to k.

P (K ≤ k;n, θ) =

k∑
i=0

(
n

i

)
θi(1− θ)n−i

BinomCDF (k;n, θ) =
k∑
i=0

(
n

i

)
θi(1− θ)n−i

We will need this further on.
The first section of the essay ends with the binomial distribution. The
language seems stilted to modern readers. However, except for Prop 4, this
first section is reasonably clear as what Price calls “a brief demonstration of
the general laws of chance”. According to Price, this “brief demonstration”
may not have been available elsewhere, although clearly the material was
already known and not being presented for the first time. The second section
starts with the “billiards” table.

4 Bayes’s “Billiards”

Original text
POSTULATE. 1. I suppose the square table or plane ABCD to be so
made and levelled, that if either of the balls O or W be thrown upon it,
there shall be the same probability that it rests upon any one equal part of
the plane as another, and that it must necessarily rest somewhere upon it.
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Figure 4.1: I suppose that the ball W shall be first thrown, and through the
point where it rests a line os shall be drawn parallel to AD, and meeting
CD and AB in s and o; and that afterwards the ball O shall be thrown p+q
or n times, and that its resting between AD and os after a single throw be
called the happening of the event M in a single trial.

[skipping down] LEM. 2. The ball W having been thrown, and the line os
drawn, the probability of the event M in a single trial is the ratio of Ao to
AB.

Comment
It’s easier to imagine a rectangular billiards table ABCD. Let the length
of the table AB = CD = 1.
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Modern equivalent

Figure 4.2: Bayes’s “Billiard” Table: Stand on the right end AD and toss
ball W onto the table and towards the left end BC. It is equally likely to
end up anywhere along the length of the table. Call its unknown distance
from the right end θ where 0 ≤ θ ≤ 1

Now suppose O is thrown. If it ends up nearer than W did, we will call
that a success (Bayes’s “event M”). If it ends up farther away, we will call
that a failure. The probability of a success is θ, which is the unknown
distance of W from the near end. Throw O a total of n times and count
the number of successes k.
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Figure 4.3: I like to think of the balls that Bayes imagines throwing as pool
balls with ball W as the (white) cue ball, and ball O as the (orange) 5-ball.

5 Propositions 8 - 10

Prop. 8 [Joint Probability Density]

Comment
This is where Bayes calculated the joint probability density of a value θ
and k successes in n trials. In modern notation, it is P (θ, k;n). This is a
hybrid probability density function because k is a discrete random variable
with possible values 0, 1, ..., n, and θ is a continuous random variable
between 0 and 1. By saying above that “there shall be the same
probability that [the ball] rests upon any one equal part of the plane as
another”, Bayes assumed a uniform prior on θ, so θ ∼ Unif(0, 1), and the
prior probability density function f(θ) = 1 for 0 ≤ θ ≤ 1.

In the following, Bayes uses y for this joint probability density P (θ, k;n).
He also uses x and r = 1− x for what we have been calling θ and 1− θ and
uses (sorry) p and q for what we have been calling k and n− k.

Original text
[With] E being the coefficient of the term in which occurs apbq when the
binomial (a+ b)p+q is expanded, y = Exprq.

Modern equivalent
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P (k, θ;n) =

(
n

k

)
θk(1− θ)n−kf(θ)

But since f(θ) = 1,

P (k, θ;n) =

(
n

k

)
θk(1− θ)n−k

Prop. 9 [Bayes’s Key Insight?]

Comment
In order to understand what follows, note that Bayes drew an
upside-down, somewhat bell-shaped curve AiB in Figure 5.1 that
represents the joint probability density function P (k, θ;n) for particular
values of k and n. For example, he would get a curve like that if he
observed 4 successes out of 10 trials, P (k = 4, θ;n = 10). The equation for
the upside-down curve would be

(
10
4

)
θ4(1− θ)6.

Original text
If before anything is discovered concerning the place of the point o [where
Ball W ended up], it should appear that the event M had happened p
times and failed q in p+ q trials, and from hence I guess that the point o
lies between any two points in the line AB, as f and b, and consequently
that the probability of the event M in a single trial was somewhere
between the ratio of Ab to AB and that of Af to AB: the probability I am
in the right is the ratio of that part of the figure AiB described as before
which is intercepted between perpendiculars erected upon AB at the
points f and b, to the whole figure AiB.

Modern equivalent
The probability that Ball W is between θ = b and θ = f is given by the
area under the upside-down curve between b and f divided by the area
under the entire curve.

P (b < θ < f |k;n) =

∫ f
b

(
n
k

)
θk(1− θ)n−kdθ∫ 1

0

(
n
k

)
θk(1− θ)n−kdθ

Original text
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COR. The same things supposed, if I guess that the probability of the
event M lies somewhere between 0 and the ratio of Ab to AB, my chance
to be in the right is the ratio of Abm to AiB.

Modern equivalent
Instead of looking at the area under the curve between b and f , we are
looking at the area between 0 and b.

P (0 < θ < b|k;n) =

∫ b
0

(
n
k

)
θk(1− θ)n−kdθ∫ 1

0

(
n
k

)
θk(1− θ)n−kdθ

Scholium

Comment
Before we get to the original text of the Scholium, we should do some
preparatory discussion.

The area under the entire upside-down curve in Figure 5.1 is

P (k;n) =

∫ 1

0

(
n

k

)
θk(1− θ)n−kdθ

This is the the probability of seeing k successes in n trials before starting
the experiment. For example, if I know that (after throwing ball W ) I am
going to throw ball O 10 times, this could be the probability of seeing
k = 4 successes.

P (k = 4;n = 10) =

∫ 1

0

(
10

4

)
θ4(1− θ)6dθ

Here is the key insight in this essay. Bayes is about to argue that

P (k;n) =
1

n+ 1
, regardless of k.

In other words, it is generally true that∫ 1

0

(
n

k

)
θk(1− θ)n−kdθ =

1

n+ 1

Note that we are no longer talking about the probability of θ being between
two numbers such as b = 0.25 and f = 0.35. This is a marginal probability
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calculated by “integrating out” θ, so we are talking about the probability
of k being 0, 1, ..., n. Above, I gave the example of n = 10, meaning that,
after throwing ball W , we will throw ball O 10 times. We could see k = 0,
1, .., 10 successes and the probability for each of those values of k is 1/11.∫ 1

0

(
10

k

)
θk(1− θ)10−kdθ =

1

11
, k = 0, 1, 2...10.

For k = 0 and k = 10, this is a simple integral, and it evaluates to 111

11 . But

if k = 4, the equation for the curve is
(
10
4

)
θ4(1− θ)6, and the area under it

is still 1
11 . ∫ 1

0

(
10

4

)
θ4(1− θ)6dθ =

1

10 + 1
=

1

11
.

If k = 9, the equation for the curve is
(
10
9

)
θ9(1− θ)1 = 10θ9(1− θ), and the

area under it? Still 1
11 . ∫ 1

0

(
10

9

)
θ9(1− θ)1dθ =

1

11
.

Figure 5.1: For the blue curve on the right, the equation is
(
10
4

)
θ4(1 − θ)6,

and for the orange curve on the left it is
(
10
9

)
θ9(1− θ)1 = 10θ9(1− θ). The

area under both curves is the same ( 1
11).

23



To show that ∫ 1

0

(
n

k

)
θk(1− θ)n−kdθ =

1

n+ 1
,

we could integrate by parts repeatedly until we reached(
n

k

)
(n− k)(n− k − 1)...(2)(1)

(k + 1)(k + 2)...(n− 1)n

∫ 1

0
θn(1− θ)0dθ,

which is
1

n+ 1
.

But this bypasses Bayes’s key insight. Instead, let’s follow Blitztein (p.
382) and assume that instead of starting with two balls: W (which you
toss once) and O (which you toss n times), you start with n+ 1 balls and
tell two different stories for the left-hand and right-hand side of∫ 1

0

(
n

k

)
θk(1− θ)n−kdθ =

1

n+ 1
.

Story 1: This is essentially the same story we have heard so far. You mark
one of the n+ 1 balls as W and toss it onto the table from the right-hand
side. Then you toss the other n balls and see that k end up to the right of
W . The position of W is θ. Conditional on θ, the probability of k
“successes” in n trials is

P (k|θ;n) =

(
n

k

)
θk(1− θ)n−k

Now, to get the unconditional (or marginal) probability of k successes, we
have to integrate over all θ and multiply by the probability density f(θ),

P (k;n) =

∫ 1

0

(
n

k

)
θk(1− θ)n−kf(θ)dθ

But again, θ ∼ Unif(0,1), so f(θ) = 1, and

P (k;n) =

∫ 1

0

(
n

k

)
θk(1− θ)n−kdθ

Story 2: This is the new story. Start with n+ 1 balls, all unmarked. Throw
them onto the table. Pick one at random and mark it W . Since each of the
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n+ 1 balls has the same probability of being marked, the probability of
there being k = 0, 1, 2, ..., n balls to the right of the marked ball is

P (k;n) =
1

n+ 1
, regardless of k.

The following is Bayes (sort of) telling Story 2 :

Original text
Notes: “Event M” is Ball O landing to the right of Ball W . The italics are
mine.

... in the case of an event concerning the probability of which we
absolutely know nothing antecedently to any trials made concerning it, ...I
have no reason to think that, in a certain number of trials, it should rather
happen any one possible number of times than another. For, on this
account, I may justly reason concerning it as if its probability had been at
first unfixed, .... But this is exactly the case of the event M. For before the
ball W is thrown, which determines it’s probability in a single trial ..., the
probability it has to happen p times and fail q in p + q or n trials is the
ratio of AiB to CA, which ratio is the same when p + q or n is given,
whatever number p is; as will appear [later in this essay] by computing the
magnitude of AiB by the method of fluxions.* And consequently before the
place of the point o is discovered or the number of times the event M has
happened in n trials, I can have no reason to think it should happen one
possible number of times than another.

*It will be proved presently in art. 4 by [fluxions] that AiB contracted in
the ratio of E to 1 is to CA as 1 to (n+1)E: from whence it plainly follows
that, antecedently to this contraction, AiB must be to CA in the ratio 1 to
n + 1, which is a constant ratio when n is given, whatever p is.

Modern equivalent
If all we know is that, after Ball W , Ball O will thrown n times, the
marginal distribution of the number of successes k must be discrete
uniform with P (k) = 1

n+1 for k = 0, 1, 2, ..., n.

Original text
In what follows therefore I shall take for granted that the rule given
concerning the event M in prop. 9 is also the rule to be used in relation to
any event concerning the probability of which nothing at all is known
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antecedently to any trials made or observed concerning it. And such an
event I shall call an unknown event.

Modern equivalent
In independent trials of an unknown binary event, all possible success
counts are equally likely.

Comment
Bayes says an “unknown event” is a binary event in which the number of
successes k in n trials, has the discrete uniform distribution: P (k) = 1

n+1
for k = 0, 1, 2, ...n. Note that the definition refers to the distribution of the
discrete variable k, not the continuous variable θ. It is true that, if
P (k) = 1

n+1 for any value of n ≥ 1, then θ ∼ Unif(0,1). Bayes didn’t know

that other prior distributions for θ than Unif(0,1) can lead to P (k) = 1
n+1

for specific values of n (Stigler p. 129). So, he is saying that the solution to
the “billiards” problem (which does assume a uniform prior distribution on
θ) applies generally to an “unknown event”.

In summary, this Scholium says:

In n independent trials of an unknown binary event, all possible
success counts k are equally likely:

P (k;n) =
1

n+ 1
, regardless of k.

This is the “rule” that Bayes highlights in this essay, “the rule to be used
in relation to any event concerning the probability of which nothing at all
is known antecedently to any trials made or observed concerning it.”

In the footnote, Bayes says that he will prove by calculus (“the method of
fluxions”) that ∫ 1

0
θk(1− θ)n−kdθ =

1

(n+ 1)
(
n
k

) .
Quite reasonably, Bayes treats as equivalent the equation with

(
n
k

)
in the

integral on the left and the equation with it in the denominator on the
right.

The quantity (n+ 1)
(
n
k

)
can be large. For n = 10 and k = 4, it is 2,310; for

n = 30 and k = 12, it is 2,681,289,975, so its inverse can be tiny.
(1/2310 = 0.0004329 and 1/2681289975 = 0.000000000373 )
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In modern terms, this integral is the value of the (complete) Beta function
with a = k + 1 and b = n− k + 1.

Here is the (complete) Beta function.

B(a, b) =

∫ 1

0
θa−1(1− θ)b−1dθ

Substituting and simplifying we see that, for positive integer values of a
and b,

B(a, b) =
(a− 1)!(b− 1)!

(a+ b− 1)!

Again, the value of this function can be tiny.

Prop. 10 [Evaluating the Incomplete Beta Function]

Comment
In what follows, Bayes will let x (instead of our θ) be the probability of
success and r = 1− x (instead of our γ = 1− θ) be the probability of a
failure in n independent binary trials. Again, he uses p (instead of k) for
the number of successes and q (instead of j) for the number of failures. As
mentioned in the Introduction, Bayes drew a rough plot of the function
y = xprq from x = 0 on the right to x = 1 on the left. Besides being right
side up, the only difference between this curve and the upside down curve
in Bayes’s first figure (our Figure 5.1), is that there is no factor of

(
n
k

)
.

Original text
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Figure 5.2: If a figure be described upon any base AH (Vid. Fig.) having
for its equation y = xprq; where y, x, r are respectively the ratios of an
ordinate of the figure insisting on the base at right angles, of the segment of
the base intercepted between the ordinate and A the beginning of the base,
and of the other segment of the base lying between the ordinate and the
point H, to the base as their common consequent.

I say then that if an unknown event has happened p times and failed q in
p+ q trials, and in the base AH taking any two points as f and t you erect
the ordinates fC, tF at right angles with it, the chance that the
probability of the event lies somewhere between the ratio of Af to AH and
that of At to AH, is the ratio of tFCf , that part of the before-described
figure which is intercepted between the two ordinates, to ACFH the whole
figure insisting on the base AH.

Modern equivalent
Before observing the trials, θ ∼ Unif(0, 1). After observing k successes
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and j failures in k + j = n trials,

P (f ≤ θ ≤ t) =

∫ t
f θ

k(1− θ)jdθ∫ 1
0 θ

k(1− θ)jdθ
.

Comment
Of course, we have everything we need if we can evaluate∫ g

0
θk(1− θ)jdθ 0 < g < 1

In modern terms, this is the incomplete Beta function with parameters
a = k + 1 and b = j + 1.

Here is the incomplete Beta function.

B(g; a, b) =

∫ g

0
θa−1(1− θ)b−1dθ 0 < g < 1

But let’s continue to use k and j:∫ g

0
θk(1− θ)jdθ

Bayes’s inability to find a good approximation for this integral for k and j
large (> 15) may be why he never submitted this essay for publication.
But he was able to express the integral as a series that can be evaluated
for either small k or small j.

Original text
Now, in order to reduce the foregoing rule to practice, we must find the
area of the figure described and the several parts of it separated by
ordinates perpendicular to its base. For which purpose, suppose AH = 1
and HO the square upon AH likewise = 1, and Cf will be = y, and
Af = x, and Hf = r, because y, x and r denote the ratios of Cf , Af , and
Hf respectively to AH. And by the equation of the curve y = xprq and
(because Af + fH = AH) r + x = 1. Wherefore

y = xp(1− x)q

= xp − qxp+1 +
q(q − 1)xp+2

2
− q(q − 1)(q − 2)xp+3

2 · 3
+ etc.
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Modern equivalent
We need to evaluate the integral∫

θk(1− θ)jdθ.

We can expand (1− θ)j using the binomial formula.

(1− θ)j = 1− jθ +

(
j

2

)
θ2 −

(
j

3

)
θ3 + etc.

Now mutliply by θk.

θk(1− θ)j = θk − jθk+1 +

(
j

2

)
θk+2 −

(
j

3

)
θk+3 + etc.

Comment
This is where Bayes uses the “method of fluxions”. He integrates term by
term. Rather than provide his original text, we will continue with the
modern equivalent.∫

θk(1− θ)j =
θk+1

k + 1
− jθk+2

k + 2
+

(
j

2

)
θk+3

k + 3
−
(
j

3

)
θk+4

k + 4
+ etc.

The above expression can be written as follows:∫
θk(1− θ)j =

j∑
i=0

(−1)i
(
j

i

)
θk+i+1

k + i+ 1

Bayes points out that this can be evaluated if j is small. Also, if k is small,
let γ = 1− θ (the probability of a failure).∫

(1− γ)k(γ)j =
k∑
i=0

(−1)i
(
k

i

)
γj+i+1

j + i+ 1

When Bayes’s friend Richard Price, in his numerical appendix, examines
cases where k is small, he uses this version of the series.

But let’s return to the version of the series that works when j is small. For
i between 0 and j, the ith term in the summation is

(−1)i
(
j

i

)
θk+i+1

k + i+ 1
.
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Bayes next did something algebraically clever and hard to follow. He
multiplied each of these terms by a new term in γ:

(−1)i
γj−i(
k+i
i

)
(−1)i in the new term cancels (−1)i in the original term; the exponents of
θ and γ now add to k + j + 1; and the other terms combine to become

1(
k+j
k

)(k + j

k + i

)
1

k + i+ 1
.

The new series is∫
θk(1− θ)j =

j∑
i=0

(−1)i
(
j

i

)(
θk+i+1

k + i+ 1

)(
(−1)i

γj−i(
k+i
i

))

=
1(
k+j
k

) j∑
i=0

(
k + j

k + i

)(
θk+i+1γj−i

k + i+ 1

)
For i = 3, the element in the new series would be

1(
k+j
k

)(k + j

k + 3

)(
θk+4γj−3

k + 4

)
Bayes would write it out this way:

j(j − 1)(j − 2)θk+4γj−3

(k + 4)(k + 3)(k + 2)(k + 1)

For i = j, the term would be

1(
k+j
k

)(k + j

k + j

)(
θk+jγj−j

k + j + 1

)
1(
k+j
k

) ( θk+j+1

k + j + 1

)
Bayes says that this new series with terms involving γ is the same as the
one with just θ, “as will easily be seen” by replacing γ with 1− θ,
expanding the terms, and ordering them according to powers of θ. “Or
more readily”, by comparing the derivatives of the two series and, in the
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second series, substituting −θ̇ for γ̇. Price added a footnote to show how
the derivatives of the two series are equal. See Endnote #5.

Now let’s make it a definite integral from θ = 0 (γ = 1− θ = 1) to θ = g
(γ = 1− g).∫ g

0
θk(1− θ)jdθ =

1(
k+j
k

) j∑
i=0

(
k + j

k + i

)(
θk+i+1γj−i

k + i+ 1

)∣∣∣∣g
θ=0

When θ = 0 (and γ = 1), all the terms are 0, so we are left with the
following:∫ g

0
θk(1− θ)jdθ =

1(
k+j
k

) j∑
i=0

(
k + j

k + i

)(
gk+i+1(1− g)j−i

k + i+ 1

)
This is Bayes’s new series to calculate the incomplete Beta function.

With some effort, one can substitute s = k + i+ 1 into Bayes’s expression
and see that it is equivalent to∫ g

0
θk(1− θ)jdθ =

1

(k + j + 1)
(
k+j
k

) k+j+1∑
s=k+1

(
k + j + 1

s

)
gs(1− g)k+j+1−s

Note that the summation above is the cumulative binomial probability of
more than k successes in k + j + 1 = n+ 1 trials: P (K > k;n+ 1, g). This
shows the relationship between the Beta and Binomial distributions. See
Endnote #6.

For now, Bayes is confirming via calculus and algebra what he said in the
Scholium, essentially that∫ 1

0
θk(1− θ)jdθ =

1

(n+ 1)
(
n
k

) .
Here again is Bayes’s new series to calculate the incomplete Beta function:∫ g

0
θk(1− θ)jdθ =

1(
k+j
k

) j∑
i=0

(
k + j

k + i

)(
gk+i+1(1− g)j−i

k + i+ 1

)
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If we evaluate the complete Beta function by letting g = 1 and 1− g = 0,
all the terms are 0 except the last i = j term.∫ 1

0
θk(1− θ)jdθ =

1(
k+j
k

)(k + j

k + j

)(
1k+j+1

k + j + 1

)
=

1

(n+ 1)
(
n
k

)
Now we can return to the original text.

Original text
If E be the coefficient of that term of the binomial (a+ b)p+q expanded in
which occurs apbq , the ratio of the whole figure ACFH to HO is
[(n+ 1)E]−1, n being = p+ q.

Modern equivalent∫ 1

0
θk(1− θ)n−kdθ =

1

(n+ 1)
(
n
k

)
Comment
Bayes shows this to support his argument in the Scholium that, knowing
nothing about the probability θ of success in a single trial, the number of
successes in n trials has the discrete uniform distribution from 0 to n,
meaning that P (k;n) = 1

n+1 for k = 0, 1, 2, ..., n . At least in this example,
knowing nothing means that θ ∼ Unif(0, 1).

He also needs it to provide the normalizing constant (n+ 1)E = (n+ 1)
(
n
k

)
for Rule 1.

6 Rule 1 [Solution to the Problem]

Original text
[Recall that Bayes’s p is our k; his q is our j.]
If nothing is known concerning an event but that it has happened p times
and failed q in p+ q or n trials, and from hence I guess that the probability
of its happening in a single trial lies somewhere between any two degrees of
probability as X and x, the chance I am in the right in my guess is
(n+ 1)E multiplied into the difference between the series

Xp+1

p+ 1
− qXp+2

p+ 2
+
q(q − 1)Xp+3

2(p+ 3)
− etc.
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and the series
xp+1

p+ 1
− qxp+2

p+ 2
+
q(q − 1)xp+3

2(p+ 3)
− etc.

E being the coefficient of apbq when (a+ b)n is expanded.

This is the proper rule to be used when q is a small number; but if q is
large and p small, change everywhere in the series here set down p into q
and q into p and x into r or (1 -x), and X into R = (1 - X); which will not
make any alteration in the difference between the two series.

Modern equivalent
In n independent binary trials with unknown success probability θ, where
θ ∼ Unif(0, 1), with k successes and n− k = j failures, the posterior
probability of θ is given as follows:

P (x < θ < X|k;n) = (n+ 1)

(
n

k

)(∫ X

x
θk(1− θ)jdθ

)
.

Since ∫
θk(1− θ)jdθ =

j∑
i=0

(−1)i
(
j

i

)
θk+i+1

k + i+ 1
,

the integral in the expression is

j∑
i=0

(−1)i
(
j

i

)
Xk+i+1

k + i+ 1
−

j∑
i=0

(−1)i
(
j

i

)
xk+i+1

k + i+ 1
,

which must be multiplied by

(n+ 1)

(
n

k

)
Comment
Substituting 1

B(k+1,n−k+1) for (n+ 1)
(
n
k

)
,

P (x < θ < X|k;n) =
1

B(k + 1, n− k + 1)

(∫ X

x
θk(1− θ)jdθ

)
This is the modern Beta CDF (cumulative distribution function) evaluated
between x and X. Endnote #7 provides definitions and properties for the
modern complete and incomplete Beta functions and the PDF and CDF of
the Beta distribution.

34



Using the modern Beta CDF, we see that Bayes wants to evaluate

P (x < θ < X|k;n) = BetaCDF (X; k+1, n−k+1)−BetaCDF (x; k+1, n−k+1)

Rule 1 provides a series expression for BetaCDF that works exactly for k
small or j = n− k small, but Bayes needs a good approximation when k
and j are both large.

After Rule 1 is presented, Richard Price takes over.

Original text
Thus far Mr Bayes’s essay.

With respect to the rule here given, it is further to be observed, that when
both p and q [k and j] are very large numbers, it will not be possible to
apply it to practice on account of the multitude of terms which the series
in it will contain.

Comment
Bayes and Price don’t say what they mean by “large numbers” for k and j,
but the largest values for which Price attempted to use Rule 1 were
k = 10, and j = 100 and he didn’t get the correct answer, so it’s safe to say
that Rule 1 was impractical for k and j both > 15.

Price next presents an abridgement of the rest of Bayes’s essay. He
presents Rule 2 and Rule 3 for approximating the probability that θ lies
within a given distance of k/n. Price and Bayes defined additional
variables that I will call θ̂ and σ:

θ̂ = k/n

σ =

√
k(n− k)

n3
=

√
θ̂(1− θ̂)

n

Using these new variables, Rule 2 and Rule 3 are for approximating the
probability that θ lies within a given distance wσ of θ̂, i.e,
P (θ̂ − wσ ≤ θ ≤ θ̂ + wσ) . In other words, Rule 2 and Rule 3 are
approximations for the following quantity:∫ θ̂+wσ

θ̂−wσ θ
k(1− θ)n−kdθ∫ 1

0 θ
k(1− θ)n−kdθ
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w > 0

This is the Beta CDF with a = k + 1 and b = n− k + 1 between θ̂ − wσ
and θ̂ + wσ.

Rules 2 and 3 do not appear to provide good approximations, so I will not
present them, but I will present the normal approximation to

f(θ) =
θk(1− θ)n−k∫ 1

0 θ
k(1− θ)n−kdθ

,

which is the Beta PDF (again with a = k+ 1 and b = n− k+ 1) . Endnote
#8 shows that

f(θ) ≈ 1√
2πσ2

exp

(
−(θ − θ̂)2

2σ2

)
Let

u =
(θ − θ̂)
σ

.

Then, the normal approximation to the Beta PDF f(θ) is given by

f(θ) ≈ 1√
2π

exp

(
−u2

2

)
= φ(u),

where
u = (θ − θ̂)/σ

φ(u) = standard normal PDF .

Recall that our objective is to approximate the Beta CDF F (θ) between
θ̂ − wσ and θ̂ + wσ:

F (θ̂ + wσ))− F (θ̂ − wσ) =

∫ k/n+wσ
k/n−wσ θ

k(1− θ)n−kdθ∫ 1
0 θ

k(1− θ)n−kdθ

The normal approximation is given by

F (θ̂ + wσ))− F (θ̂ − wσ) ≈ 1√
2π

∫ w

−w
exp

(
−u2

2

)
du

≈ Φ(w)− Φ(−w)

≈ 2Φ(w)− 1
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where Φ(w) = standard normal CDF. I will use this in the discussion of
Price’s appendix of numerical examples.

The normal approximation to the Beta CDF was derived by Laplace in the
1780s, two decades after Bayes’s essay was published.

Although Bayes and Price were trying to approximate the area under the
Beta PDF for an interval around θ̂ = k/n, θ̂ is not the mean of the
distribution but the mode, i.e., the value of θ where f(θ) is maximum. You
can see this by setting the derivative equal to 0. Endnote #9 shows that
the mean of Beta PDF is

k + 1

n+ 2

Like the normal approximation to the Beta CDF, this expression was
derived by Laplace about two decades after publication of the Bayes/Price
essay. For the special case of k = n (all n successes and no failures), it is
called Laplace’s Rule of Succession:

n+ 1

n+ 2
= E(θ|k = n).

Laplace famously applied this to the probability that the sun would rise on
day n+ 1 after having been observed to rise for n days. As we shall see
momentarily, well before Laplace, Price addressed the probability of
sunrise in his appendix to this essay. Bayes and Price aren’t interested in
the mean of what we now call the Beta posterior distribution. In the
appendix, Price focuses on the probability that θ is greater than 0.5 given
k successes and j failures in k + j = n trials, i.e., P (θ > 0.5; k, j).

7 Richard Price’s Appendix of Numerical Exam-
ples

AN APPENDIX
Containing an application of the foregoing Rules to some particular Cases

Comment
Price starts the Appendix by applying Rule 1, which is

P (x<θ<X | k, n) = (n+1)

(
n

k

)( j∑
i=0

(−1)i
(
j

i

)
Xk+i+1

k + i+ 1
−

j∑
i=0

(−1)i
(
j

i

)
xk+i+1

k + i+ 1

)
.
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But, he starts with j = 0 (no failures), so k = n.

P (x < θ < X | k=n) = (n+ 1)

(
Xn+1

n+ 1
− xn+1

n+ 1

)
= Xn+1 − xn+1

He focuses on the probability of “more than an even chance” of success,
i.e., P (θ > 1

2).

P (1/2 < θ ≤ 1 | k=n) = 1n+1 − (1/2)n+1

= 1− 1

2n+1

=
2n+1 − 1

2n+1

So, if we have seen one success (k=n=1), P (θ > 1
2) = 3

4 ; for k=2, it’s 7
8 ; for

k=3, 15
16 , and so on. Which leads him to his sunrise example.

Original Text

Figure 7.1: Let us imagine to ourselves the case of a person just brought
forth into this world, and left to collect from his observation of the order and
course of events what powers and causes take place in it. The Sun would,
probably, be the first object that would engage his attention; but after losing
it the first night he would be entirely ignorant whether he should ever see
it again. He would therefore be in the condition of a person making a first
experiment about an event entirely unknown to him.

But let him see a second appearance or one return of the Sun, and an
expectation would be raised in him of a second return, and he might know
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that there was an odds of 3 to 1 for some probability of this. This odds
would increase, as before represented, with the number of returns to which
he was witness. But no finite number of returns would be sufficient to
produce absolute or physical certainty. For let it be supposed that he has
seen it return at regular and stated intervals a million of times. The
conclusions this would warrant would be such as follow. There would be
the odds of the millionth power of 2, to one, that it was likely that it
would return again at the end of the usual interval. There would be the
probability expressed by 0.5352, that the odds for this was not greater
than 1,600,000 to 1; and the probability expressed by 0-5105, that it was
not less than 1,400,000 to 1 .

Modern Equivalent
After 1,000,000 successes in a row, the distribution of θ is such that

P (θ > 0.5) =
21,000,000 − 1

21,000,000
≈ 1.

Of more interest, are the following:

P

(
θ <

1, 600, 000

1, 600, 001

)
= 0.5352

P

(
θ >

1, 400, 000

1, 400, 001

)
= 0.5105

Comment
Note that

P

(
θ <

1, 400, 000

1, 400, 001

)
= 1− 0.5105 = 0.4895.

By definition, the median of the posterior distribution on θ is such that

P (θ < median) = 0.5.

So, since

P

(
θ <

1, 400, 000

1, 400, 001

)
= 0.4895

P

(
θ <

1, 600, 000

1, 600, 001

)
= 0.5352,

we have bounds for the median:

1, 400, 000

1, 400, 001
< median <

1, 600, 000

1, 600, 001
.
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Using Excel, I get the value of the median to be

1, 442, 695

1, 442, 696
.

Laplace, writing 20 years later, was more interested in the mean or E(θ),
which is given by

E(θ) =
1, 000, 001

1, 000, 002

and thus is lower than the median.

Laplace, like Price, chose to use sunrises as an example of a long string of
successes without any failures. After calculating the probability of another
sunrise after a series of 1,826,213 as

1, 826, 214

1, 826, 215
,

he added, “But this number is incomparably greater for him who,
recognizing in the totality of phenomena the principal regulator of days
and seasons, sees that nothing at the present moment can arrest the course
of it.” (Pierre Simon Laplace. A Philosophical Essay on Probabilities .
1795. Blackmore Dennett. Kindle Edition. Chapter III.)

Price made a similar disclaimer...

Original Text
It should be carefully remembered that these deductions suppose a
previous total ignorance of nature. After having observed for some time
the course of events it would be found that the operations of nature are in
general regular, and that the powers and laws which prevail in it are stable
and permanent.

Comment
After discussing the the sunrise problem, Price turns to runs of binary
trials that include failures as well as successes. His example of a binary
trial is a lottery draw that can result in either a “prize” or a “blank”. The
success probability θ is the unknown proportion of prizes overall. This isn’t
as good an example as Bayes’s “billiards” table. One wonders whether
successive draws are made without replacement, in which case they
wouldn’t be independent. In presenting Price’s results, I will generalize to
n independent binary trials with k successes and j = n− k failures.
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Price likes a series of trials with 1 success for every 10 failures, so
k:j = 1:10 and k/(k + j) = k/n = 1

11 = 0.0909.... He starts with n = 11
trials, k = 1 success, and j = 10 failures. Then, he moves to 22, 44, and
110 trials with, respectively, 2, 4, and 10 successes. He uses Rule 1 to
calculate the probability that θ is between 1

12 and 1
10 , P ( 1

12 < θ < 1
10).

(Note: Price presents this as the (equivalent) probability that γ, the
proportion of “blanks”, is between 9

10 and 11
12 , but I prefer to present the

probability that θ is between 1
12 and 1

10 .)

P (
1

12
<θ<

1

10
| k, n) = (n+1)

(
n

k

)( k∑
i=0

(−1)i
(
k

i

) 11
12

j+i+1

j + i+ 1
−

k∑
i=0

(−1)i
(
k

i

) 9
10

j+i+1

j + i+ 1

)
.

Table 1 shows Price’s results. For comparison, it also provides the actual
values (obtained using Excel’s Beta distribution function).

Table 1: Richard Price’s probability calculations.
n k R. Price’s P P ( 1

12 < θ < 1
10)

11 1 0.0770 0.0770
22 2 0.1084 0.1084
44 4 0.1525 0.1527

110 10 0.2506 0.2390

The discrepancy in the 4th row means Price was off somewhat when he did
the following 11-term summation:

10∑
i=0

(−1)i
(

10

i

) 11
12

100+i+1

100 + i+ 1

I attempted to duplicate the calculation using the series formula instead of
Excel’s Beta distribution function and was off by 0.0002. It’s impressive
that Price did so well presumably using a feather quill and a table of
logarithms.

Price then moves on to n = 1100 and k = 100. Now, he must use Rule 2,
which requires a symmetrical interval around θ = k

n = 1
11 , so he changes
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the lower bound of the interval from 1
12 to 1

11 −
1

110 = 9
110 , which is slightly

less than 1
12 (0.081818 instead of 0.083333). The upper bound remains

1
11 + 1

110 = 11
110 = 1

10 . For P ( 9
110 < θ < 1

10), he gives a range of 0.7953 to
0.9405, which is quite wide and does not even contain the true probability
of 0.7055.

In subsequent work, Price got close to deriving Laplace’s normal
approximation to the Beta distribution (Dale p. 36). Here is the normal
approximation for P ( 9

110 < θ < 1
10) given k = 100 successes and j = 1000

failures in n = 1100 trials:

2Φ(
1
10 −

1
11

σ
)− 1

σ =

√
(1/11)(10/11)

1100
= 0.0087

2Φ(
0.1000− 0.0909

0.0087
)− 1

2Φ(1.049)− 1

2(0.853)− 1 = 0.706

Both the calculation with n = 1100 and another with n = 11000, which I
will omit, reveal the inadequacy of Rules 2 and 3. In both his cover letter
and this appendix, Price expresses his hope that “some person shall
discover a better approximation to the value of the two series in the first
rule”. As we have seen, Laplace did, possibly within Price’s lifetime. Price
died in 1791.

8 My Addendum on Bayes’s Real Rule

In modern terminology, the posterior distribution of success probability θ
after observing k successes and j failures in k + j = n trials is

BetaPDF (θ; k + 1, j + 1)

if the prior distribution of θ was Unif(0, 1).

Remember that a uniform prior is also a Beta prior with parameters a = 1
and b = 1, BetaPDF (1, 1).
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So, if you start with
θ ∼ BetaPDF (1, 1),

and you observe k successes and j failures, you finish with

θ ∼ BetaPDF (1 + k, 1 + j).

More generally, if you start with

θ ∼ BetaPDF (a, b),

and you observe k successes and j failures, you finish with

θ ∼ BetaPDF (a+ k, b+ j).

Nowadays, anyone using Microsoft Excel, which has a Beta distribution
function, can solve Bayes’s problem, not just for a uniform prior
distribution, but for a wide variety of prior (Beta) distributions.

Bayes’s key insight, presented in the Scholium, was to define an “unknown
event” as one for which the number of occurrences k in n trials has the
discrete uniform distribution

P (k;n) =
1

n+ 1
, k = 0, 1, ..., n.

He used his “billiards” example to also show that, for any allowable k,

P (k;n) =

∫ 1

0

(
n

k

)
θk(1− θ)n−kdθ.

Setting these two expressions for P (k;n) equal, we get∫ 1

0

(
n

k

)
θk(1− θ)n−kdθ =

1

(n+ 1)

or dividing through by
(
n
k

)
,∫ 1

0
θk(1− θ)n−kdθ =

1

(n+ 1)
(
n
k

)
He then confirmed this using calculus and algebra in Prop. 10 .
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We all use “Bayes’s Rule” to refer to

P (A|B) =
P (B|A)P (A)

P (B)
,

but Bayes never wrote it.

The mathematical rule that he highlighted was, in modern notation,∫ 1

0

(
n

k

)
θk(1− θ)n−kdθ =

1

(n+ 1)
k = 0, 1, 2, ...n.

Here is how he said it in words:

... in the case of an event concerning the probability of which we
absolutely know nothing antecedently, ...I have no reason to think
that, in a certain number of trials, it should rather happen any one
possible number of times than another.

And here is my “translation”:

In independent trials of an unknown binary event, all possible
success counts are equally likely.

According to Stigler (p. 98), this essay by Bayes “was ignored by his
contemporaries (save Richard Price) and seems to have had little or no
impact upon the early development of statistics” until rediscovery and
development by Laplace. It seems to have come to European notice around
1780, almost 20 years after Bayes’s death and 17 years after publication.
Apparently, the term “Bayesian” only goes back to about 1950. (See the
conclusion of Stigler’s paper on Price.)

9 Endnotes

#1 About forming the possessive of singular nouns
If you think I should be forming the possessive of our author’s surname in
some way other than “Bayes’s”, read Strunk and White, Page 1, Rule 1.
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Figure 9.1: Strunk W, White EB. The elements of style. 3d ed. New York:
Macmillan; 1979. PAGE 1.

Have things changed? Not according to Benjamin Dreyer, Copy Chief at
Random House, who wrote this in 2019:

. . . you’ll save yourself a lot of thinking time by not thinking about
those s’s and just applying them. I’d even urge you to set aside the
Traditional Exceptions for Antiquity and/or being the Son of God
and go with: Socrates’s, Aeschylus’s, Jesus’s .

Dreyer B. Dreyer’s English: an utterly correct guide to clarity and
style. First edition. New York: Random House; 2019. p. 39.

And what did Richard Price write in 1763, when he wanted to take over
with his abridgement and end the part of the essay written by Bayes?

#2 Utility vs. monetary value
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Bayes may not have known that, in a 1738 essay, Daniel Bernoulli
distinguished between price and utility:

. . . the value of an item must not be based on its price, but rather on
the utility it yields. The price of the item is dependent only on the
thing itself and is equal for everyone; the utility, however, is
dependent on the particular circumstances of the person making the
estimate. Thus there is no doubt that a gain of one thousand ducats
is more significant to a pauper than to a rich man though both gain
the same amount.
Daniel Bernoulli, Exposition of a New Theory on the Measurement of
Risk, Papers of the Imperial Academy of Sciences in St. Petersburg,
1738.

Bayes doesn’t bother with this distinction between monetary values and
utility. If he did, he would equate “value” with utility.

#3 Alternative version of Prop. 4
Dispense with the awkward N by setting it equal to 1. Now,
P (B) = b/N = b and P (B ∩A) = P/N = P, also let dB be the first day
that B occurs.

P (dB = 1) = b

P (dB = 2) = (1− b)b
P (dB = 3) = (1− b)2b
P (dB = i) = (1− b)i−1b

This is the “First Success” distribution.

The probability that i is the first day that B occurs and A also occurs on
that day is

P (A ∩ dB = i) = (1− b)i−1P

To get P (W ), the probability of receiving N, sum over all i.

P (W ) =
∞∑
i=1

(1− b)i−1P

P (W ) =
P

b
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#4 More on the Odds Form of Bayes’s Rule
Here, again, is the odds form of Bayes’s Rule:

P (A|B)

P (Ac|B)
=

P (B|A)

P (B|Ac)
P (A)

P (Ac)

Odds(A|B) = LRA(B)×Odds(A)

We can convert the multiplication into addition by taking the (base 10)
logarithm:

logOdds(A|B) = logLRA(B) + logOdds(A)

Jaynes (page 91) multiplies through by 10 to get

10 logOdds(A|B) = 10 logLRA(B) + 10 logOdds(A)

He denotes 10 logOdds(A) as e(A) and 10 logOdds(A|B) as e(A|B), so

e(A|B) = 10 logLRA(B) + e(A)

Jaynes’s units for e(A) are decibels, abbreviated db. A 1 db increase in
e(A) corresponds to multiplying Odds(A) by 100.1 ≈ 1.26. If Odds(A) is a
small number (e.g., < 0.1), then a 1 db increase in e(A) also corresponds
to multiplying P (A) by 1.26. When Odds(A) is a large number, a 1 db
increase in e(A) corresponds to a much smaller multiple of P (A).
According to Jaynes (p. 93), “a 1 db change in [e(A)] is about the smallest
increment in plausability that is perceptible to our intuition.”

During his code breaking work in World War II, Alan Turing expressed
plausibility using the same quantity, 10 logOdds, and called the units
“decibans” instead of decibels. (Jaynes, p. 116)

The likelihood ratio for A of B is the ratio of posterior odds to prior odds,

LRA(B) =
Odds(A|B)

Odds(A)
.

But it is not the “Odds Ratio”. The Odds Ratio for A with respect to B,
ORA(B), is the ratio of posterior odds of A given B to posterior odds of A
given Bc:

ORA(B) =
Odds(A|B)

Odds(A|Bc)
.

LRA(B) and ORA(B) have the same numerator but different
denominators.
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#5 Show the derivatives of Bayes’s two expressions are equal
Recall that the first expression, which contains only θ, not γ, is∫

θk(1− θ)j =

j∑
i=0

(−1)i
(
j

i

)
θk+i+1

k + i+ 1

Bayes got this by expanding (1− θ)j using the binomial theorem,
multiplying by θk, and integrating term by term. We can reverse these
steps and differentiate term by term, factor out θk, and recognize what
remains as the binomial expansion of (1− θ)j . Or we could just remember
the fundamental theorem of calculus. Either way, the derivative of the
right-hand side must be

θk(1− θ)j

The second expression with the new term in γ is

1(
k+j
k

) j∑
i=0

(
k + j

k + i

)(
θk+i+1γj−i

k + i+ 1

)
.

We just need to verify that the derivative of this second expression is also
θk(1− θ)j .

Leaving aside the factor out front of 1

(k+j
k )

, using the rule for taking the

derivative of a product, and remembering that γ = 1− θ and dγ/dθ = −1,
we get that the derivative is

j∑
i=0

((
k + j

k + i

)
θk+iγj−i −

(
k + j

k + i

)
j − i

k + i+ 1
θk+i+1γj−i−1

)
Simplifying the second (negative) part of the derivative, this is

j∑
i=0

((
k + j

k + i

)
θk+iγj−i −

(
k + j

k + i+ 1

)
θk+i+1γj−i−1

)
The second (negative) part of element i cancels the first (positive) part of
element i+ 1. This is a “telescoping sum”. The second part of the last or
jth element is 0. So we are left with only the first part of the first element,
which is (

k + j

k + 0

)
θk+0γj−0
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(
k + j

k

)
θkγj

Multiplying by the factor of 1

(k+j
k )

that we left aside earlier, we have

θk(1− θ)j .

Thus, we have verified∫
θk(1− θ)j =

1(
k+j
k

) j∑
i=0

(
k + j

k + i

)(
θk+i+1γj−i

k + i+ 1

)
#6 Relationship between the Beta and Binomial CDFs
Bayes claimed and we verified in Endnote #5 that∫ g

0
θk(1− θ)n−kdθ =

1(
k+j
k

) j∑
i=0

(
k + j

k + i

)(
gk+i+1(1− g)j−i

k + i+ 1

)
.

I said that with some effort, one can substitute s = i+ k + 1 into Bayes’s
expression and see that it is equivalent to∫ g

0
θk(1− θ)jdθ =

1

(k + j + 1)
(
k+j
k

) k+j+1∑
s=k+1

(
k + j + 1

s

)
gs(1− g)k+j+1−s

If we multiply through by (k + j + 1)
(
k+j
k

)
, we get

(k + j + 1)

(
k + j

k

)∫ g

0
θk(1− θ)jdθ =

k+j+1∑
s=k+1

(
k + j + 1

s

)
gs(1− g)k+j+1−s.

On the left we have BetaCDF (g; k+ 1, j + 1) and on the right we have the
cumulative binomial probability of more than k successes in n+ 1 trials:
P (K > k;n+ 1, g), so this expression relates the Beta and Binomial CDFs.

Here is another way to get to that expression. Returning to Bayes’s
“billiards”, throw n+ 1 balls and specifically mark the ball with k balls to
its right, i.e., ball k + 1. The position of this ball is θk+1. What is the
probability that θk+1 < g? It’s the probability that at least k+ 1 balls are
to the right of g, which is the probability that ball k + 1 is to the right of g
and balls k + 2, ..., n+ 1 are to its left plus the probability that ball k + 2
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is to the right of g and balls k + 3, ...n+ 1 are to its left plus the
probability that ball k + 3 is to the right of g....

F (θk+1 ≤ g) =
n+1∑
s=k+1

(
n+ 1

s

)
gi(1− g)n+1−s g ∈ [0, 1]

This is the CDF for the position of ball k + 1. It is also the probability of
greater than k successes in n+ 1 binary trials with success probability g,
P (K > k;n+ 1, g).

To get the PDF f(θk+1), we could take the derivative of the CDF,
F (θk+1 ≤ g), with respect to g, but according to Blitzstein, “the resulting
expression is ugly” (Blitzstein p. 401). We know from Bayes’s Prop. 10
that it’s going to be BetaPDF (k + 1, n− k + 1). Here is my adaptation of
Blitztein’s explanation.

What is the probability f(θk+1)dθ that you mark a ball k+ 1 and it falls in
the infinitesimal interval of width dθ around some arbitrary θ? First, we
choose from the n+ 1 balls to get the one that we mark. That gets us a
factor of n+ 1. Because of the uniform distribution, the probability that
the chosen ball is in the interval dθ is just dθ, so now we have (n+ 1)dθ.
From the remaining n balls, we choose exactly k to be to right of the
marked ball, each with probability θ, leaving n− k = j to its left, each
with probability (1− θ). That gets us a factor of

(
n
k

)
θk(1− θ)j . We

multiply the factors to get

f(θk+1)dθ = (n+ 1)dθ

(
n

k

)
θk(1− θ)j

Dropping the dθs from both sides, gets us

f(θk+1) = (n+ 1)

(
n

k

)
θk(1− θ)j

Another expression for the CDF is the integral of the PDF:

F (θk+1 ≤ g) =

∫ g

0
(n+ 1)

(
n

k

)
θk(1− θ)jdθ g ∈ [0, 1]

Setting our two expressions for the CDF F (θk+1 ≤ g) equal, we get∫ g

0
(n+ 1)

(
n

k

)
θk(1− θ)n−kdθ =

n+1∑
s=k+1

(
n+ 1

s

)
gs(1− g)n+1−s
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This is what we set out to obtain.

Instead of summing from k + 1 to n+ 1, we could sum from 0 to k and
subtract from 1.

F (θk+1 ≤ g) = 1−
k∑
i=0

(
n+ 1

i

)
gi(1− g)n+1−i

= 1−BinomCDF (k;n+ 1, g)

We now have the relationship between the Beta CDF and the Binomial
CDF.∫ g

0
(n+ 1)

(
n

k

)
θk(1− θ)n−kdθ = 1−

k∑
i=0

(
n+ 1

i

)
gi(1− g)n+1−i

BetaCDF (g; k + 1, n− k + 1) = 1−BinomCDF (k;n+ 1, g)

Or let m = n+ 1 and move things around

1−BetaCDF (g; k + 1,m− k) = BinomCDF (k;m, g)

I digress to point out how the relationship between the BetaCDF and the
BinomCDF can be used today when we have a function for the inverse
BetaCDF in Microsoft Excel. We can calculate the exact binomial
confidence interval about the probability of success g when we observe k
successes in m trials. The point estimate is g = k/m and the 1− α
confidence interval is given by

InvBetaCDF (α/2, k,m− k + 1) to InvBetaCDF (1− α/2, k + 1,m− k)

For example, if k = 4 and m = 10, the point estimate for success
probability g is 4

10 = 0.4, and then the 95% confidence interval is given by

InvBetaCDF (0.025, 4, 7) = 0.1216 to InvBetaCDF (0.975, 5, 6) = 0.7376

#7 Definitions and properties of the complete and incomplete
Beta functions and the Beta distribution’s PDF and CDF
Complete Beta Function:

B(a, b) =

∫ 1

0
θa−1(1− θ)b−1dθ
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Properties of the Complete Beta Function:

B(a, b) = B(b, a),

For a and b positive integers,

B(a, b) =
1

(a+ b− 1)
(
a+b−2
a−1

) =
(a− 1)!(b− 1)!

(a+ b− 1)!
.

Incomplete Beta Function:

B(g; a, b) =

∫ g

0
θa−1(1− θ)b−1dθ 0 < g < 1

Properties of the Incomplete Beta Function:∫ 1

g
θa−1(1− θ)b−1dθ =

∫ 1−g

0
θb−1(1− θ)a−1dθ

= B(1− g; b, a)

Since∫ g

0
θa−1(1− θ)b−1dθ +

∫ 1

g
θa−1(1− θ)b−1dθ =

∫ 1

0
θa−1(1− θ)b−1dθ,

B(g; a, b) +B(1− g; b, a) = B(a, b) = B(b, a).

Beta Distribution PDF:

BetaPDF (θ; a, b) =
1

B(a, b)
θa−1(1− θ)b−1 0 < θ < 1

Properties of the Beta PDF:

BetaPDF (θ; 1, 1) = 1 for 0 < θ < 1, so BetaPDF (1, 1) and
Unif(0, 1) are the same distribution.

Beta Distribution CDF:

BetaCDF (g; a, b) =
1

B(a, b)

∫ g

0
θa−1(1− θ)b−1dθ 0 < g < 1

=
B(g; a, b)

B(a, b)
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Properties of the Beta CDF:

B(g; a, b)

B(a, b)
+
B(1− g; b, a)

B(b, a)
= 1

BetaCDF (g; a, b) +BetaCDF (1− g; b, a) = 1

#8 Normal approximation to the Beta PDF
The Beta PDF is given by

f(θ) =
θk(1− θ)n−k∫ 1

0 θ
k(1− θ)n−kdθ

.

Let

γ = 1− θ
j = n− k
θ̂ = k/n

γ̂ = j/n

σ2 =
kj

n3
=
θ̂γ̂

n

B =

∫ 1

0
θk(1− θ)n−kdθ

Now,

f(θ) =
θkγj

B
.

Take the logarithm.

L(θ) = ln f(θ) = k ln(θ) + j ln γ − lnB

We are going to expand a power series about θ̂ = k/n, so we need
L′(θ) = dL/dθ and L′′(θ) = d2L/dθ2 evaluated at θ̂ (and γ̂). Note that
dγ/dθ = −1.

L′(θ) =
k

θ
− j

γ

L′(θ̂) =
k

k/n
− j

j/n

= n− n
= 0
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This means that the function has its maximum at θ = k/n = θ̂, which is
why we will expand the power series around this point.

L′′(θ) = − k

θ2
− j

γ2

L′′(θ̂) = −
(

k

(k/n)2
+

j

(j/n)2

)
= −n2

(
1

k
+

1

j

)
= −n2

(
j + k

kj

)
= −n2

(
n

kj

)
= −n

3

kj

= − 1

σ2

The power series expansion is given by

L(θ) = L(θ̂) + L′(θ̂)(θ − θ̂) + L′′(θ̂)
(θ − θ̂)2

2
+ ...

= L(θ̂) + 0(θ − θ̂)− (θ − θ̂)2

2σ2
+ ...

= L(θ̂)− (θ − θ̂)2

2σ2
+ ...

Drop the higher order terms and exponentiate.

f(θ) ≈ f(θ̂) exp

(
−(θ − θ̂)2

2σ2

)

≈ θ̂kγ̂j

B
exp

(
−(θ − θ̂)2

2σ2

)

In order for this to be a valid PDF that integrates to 1, the constant θ̂kγ̂j

B
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should be 1√
2πσ2

. Let’s see if this works out. 1/B = (n+ 1)
(
n
k

)
, so

θ̂kγ̂j

B
= (n+ 1)

(
n

k

)
θ̂kγ̂j

= (n+ 1)

(
n!

k!j!

)(
k

n

)k ( j
n

)j
= (n+ 1)

(
n!

nn

)(
kk

k!

)(
jj

j!

)
Stirling’s formula says m!/mm ≈

√
2πm/em.

θ̂kγ̂j

B
≈ (n+ 1)

(√
2πn

en

)(
ek√
2πk

)(
ej√
2πj

)
≈ (n+ 1)

√
n√

2πkj

≈ 1√
2π(kj/n3)

≈ 1√
2πσ2

So, here is our approximation:

f(θ) =
θk(1− θ)n−k∫ 1

0 θ
k(1− θ)n−kdθ

≈ 1√
2πσ2

exp

(
−(θ − θ̂)2

2σ2

)
where

θ̂ = k/n

σ2 =
k(n− k)

n3
=
θ̂(1− θ̂)

n
=
θ̂γ̂

n
Side note: An equivalent equation to the above is

(n+ 1)

(
n

k

)
θk(1− θ)n−k ≈ 1√

2πσ2
exp

(
−(θ − θ̂)2

2σ2

)

As n→∞, n+ 1→ n. Divide both sides by n. Note that nθ̂ = k.(
n

k

)
θk(1− θ)n−k ≈ 1√

2πn2σ2
exp

(
−(nθ − nθ̂)2

2n2σ2

)

≈ 1√
2πn2σ2

exp

(
−(nθ − k)2

2n2σ2

)
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Substitute nθ̂γ̂ for n2σ2.(
n

k

)
θk(1− θ)n−k ≈ 1√

2πnθ̂γ̂

exp

(
−(nθ − k)2

2nθ̂γ̂

)

If I assume that nθ̂γ̂ approaches nθγ as n→∞, then(
n

k

)
θk(1− θ)n−k ≈ 1√

2πnθγ
exp

(
−(k − nθ)2

2nθγ

)
Doesn’t this provide the normal approximation to the binomial?

#9 Mean of the Beta PDF
The mean of f(θ) is calculated as follows:

E(θ) =

∫ 1

0
θf(θ)dθ

=

∫ 1

0
θ

θk(1− θ)n−k

B(k + 1, n− k + 1)
dθ

=

∫ 1
0 θ

k+1(1− θ)n−k

B(k + 1, n− k + 1)
dθ

Remember that B(k + 1, n− k + 1) = 1

(nk)(n+1)
, so

E(θ) =

(
n

k

)
(n+ 1)

∫ 1

0
θk+1(1− θ)n−kdθ

Using what we have learned about integrals like this,∫ 1

0
θk+1(1− θ)n−kdθ =

1(
n+1
k+1

)
(n+ 2)

,

so

E(θ) =

(
n
k

)
(n+ 1)(

n+1
k+1

)
(n+ 2)

=
k + 1

n+ 2
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Just as θ̂ = k/n is not the mean of the Beta PDF, σ =
√
k(n− k)/n3 is

not the standard deviation Beta PDF. The standard deviation of the Beta
PDF is given by √

(k + 1)(n− k + 1)

(n+ 2)2(n+ 3)
.
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